Contents

General Information
Contents.. 1
Introduction & Customer Service.......................... 2
About Appvion, Inc... 3-4
History of NCR PAPER* Brand Carbonless........... 5
What is NCR PAPER Brand?............................... 6
Carbonless Paper System.................................... 7
Construction & Verification............................... 8-9

Packaging & Handling
Packaging & Handling.. 11
Recycling... 12
Handling NCR PAPER Brand.............................. 13
Handling Accessories....................................... 14
Storage & Conditioning..................................... 15
Unwrapping & Relative Humidity......................... 16

Printing-Rotary
Printing on Business Forms Presses...................... 17
Offset Printing... 18
Printing Inks.. 19-21
Dampening Systems & Fountain Solution............... 22-23
Plates.. 24
Blankets.. 25
Line Hole Punching & Perforating........................ 26
Delivery & Rewind.. 26
Screen Tints.. 27
Desensitizing Ink... 28
Backprinting... 29
Dry Offset CF Ink.. 30-32
CF Ink Color Standard..................................... 32

Collating & Binding
Collating, Perforating & Slitting.......................... 33-34
Numbering, Gluing.. 34
Cutting.. 35
Miscellaneous Bindery Operations....................... 36
Fanapart Edge Padding..................................... 37-38

Troubleshooting Tips
Troubleshooting Tips.. 39-46

Miscellaneous Information
Specialty Applications.. 47-48
Optical Character Recognition............................ 49
Magnetic Ink Character Recognition...................... 50
Shelf Life & Storage... 51
Copying & Microfilming..................................... 52
Instant Replay II.. 53
Receiving API Products.................................... 54
Complaint Procedure....................................... 55
Roll Length Calculation & Metric Conversion Guide 56-57

Glossary
Glossary.. 59-69
Technical Services & Customer Service................ 70

1.
Introduction

Our goal is to help your company be more productive and profitable and maintain a technical edge.

As with all our Success Resources programs, Technical Solutions is a result of Appvion's uncompromising dedication to customer satisfaction and our commitment to the industry.

Technical Solutions will help you:

■ Enhance printing quality — for more satisfied customers.
■ Increase productivity — for improved output rates.
■ Reduce waste — to make your business more profitable.
■ Improve employee skills — to be more efficient.

Technical Solutions will give you:

■ Experienced advice on all aspects of forms production.
■ Innovative troubleshooting information in an easy to understand and use format.
■ Useful material from manufacturers and suppliers about other products you use.

Technical Solutions is a reference for using Appvion products. Information in this binder will be updated and supplemented on a periodic basis.

If you have any questions, comments, or suggestions, please contact your local Appvion representative. Or just complete and send in one of the business reply cards in the back of this binder.

Customer Service

Technical Services Department:

■ Complaints (Damage, see Customer Service)
■ Technical information
■ Packaging & Handling
■ Application Information

Appvion, Inc.
Technical Services Dept.
825 E. Wisconsin Ave.
P.O. Box 359
Appleton, WI 54912

West: (800) 922-1723
Central: (800) 981-9681
East: (800) 922-1724

Hours: Monday-Friday
7:30 AM - 4:30 PM (CT)

General Offices:
Appvion, Inc.
825 E. Wisconsin Ave.
P.O. Box 359
Appleton, WI 54912
(920) 734-9841

Customer Service Department:

■ Order Information
■ Product Inquiries
■ Product Availability
■ Pricing
■ Damaged Paper

U.S. and Canada
(800) 533-9421
Hours: Monday-Friday
7:00 AM - 5:30 PM (CT)

International
(920) 991-7639
Hours: Monday-Friday
7:00 AM - 4:00 PM (CT)

Visit Our Web Site:
www.appvion.com
About Appvion, Inc.

In 1907, Charles Boyd founded our company with the belief that he could increase the value of paper by applying coatings to it. More than a century later that ability to add value to paper is one of the things that sets Appvion apart from other paper companies. We don’t choose to make every kind of paper. We produce only specialty coated papers like carbonless, thermal and security products. And it’s something we do extraordinarily well.

For more than 50 years, we have also been pioneers in microencapsulation, the remarkable process that makes carbonless paper work so well. Appvion scientists have continued to develop and refine microencapsulation technology and explore opportunities for microencapsulation to extend to applications beyond carbonless paper. Those efforts have enabled Appvion to develop specific and proprietary product solutions for the consumer products industry, which led to the creation of Appvion’s Encapsys® division, an innovative and rapidly growing specialty chemical operation.

Our leadership positions Encapsys®
Our Encapsys scientists apply Appvion’s extensive knowledge of microencapsulation through an open, collaborative approach with our partners that enables us to deliver effective and rapid product innovations that none of us would likely achieve on our own.

Carbonless paper
Appvion is the world’s largest producer of carbonless paper and the only producer of the NCR PAPER® brand carbonless paper, a product Appvion helped introduce in 1954. Carbonless paper is used to make multipart business forms such as invoices and purchase orders.

Thermal paper
Appvion is North America’s largest producer of direct thermal media and the segment’s original and leading innovator. Appvion offers a wide range of thermal papers and related substrates for the transaction and item identification markets — and we do not use bisphenol A (BPA) to produce any of our products. Our thermal products are routinely used for point-of-sale receipts and coupons, entertainment and transportation tickets; lottery and gaming tickets; engineering, medical and industrial charts; tags for airline baggage and retail applications; and labels for shipping, warehousing, medical and clean room applications.

Security paper
Appvion’s security products developed from our carbonless check business which continues to offer products with basic security features that resist forgery, tampering and counterfeiting. From that foundation we are developing additional products that incorporate security technologies such as watermarks, taggants, embedded threads and fibers, and machine-readable technologies. We focus on developing products for checks, business and government documents.

Specialty applications
As part of our technical papers business, we also produce coated products for specialty displays and other design and print applications. We offer custom coating solutions and the potential for strategic partnerships through our engineered manufacturing solutions program. That program focuses on our ability to apply barrier and/or printable coatings to substrates.

Our Operations
Appvion is headquartered in Appleton, Wis. We operate a pulp and paper mill at Roaring Spring, Pa.; converting plants at West Carrollton, Ohio and at Appleton, and a capsule plant at Portage, Wis. We operate distribution centers in Appleton, Wis., Camp Hill, Pa., Monroe, Ohio, Kansas City, Kan., Portland, Ore., Ontario, Calif., McDonough, Ga., and Peterborough, Ontario, St. Helens, England, and Utrecht, Netherlands.

*NCR PAPER is a registered trademark licensed to Appvion, Inc.
History of NCR PAPER* Brand Carbonless

1954 March 26th is the first commercial sale of NCR PAPER brand and the first registered use of the NCR PAPER* trademark.

The development of NCR PAPER brand of carbonless paper dates back to the late 1940s when researchers were asked to develop a technique for printing without using ink rolls or ribbons.

A key factor in achieving this goal was the development of a technique to chemically convert certain color dyes to a colorless state. When these dyes are in a colorless state, they will not produce color when placed in contact with ordinary paper, clothing, or skin. However, when the dyes are placed in contact with special reaction materials, intense colors are formed.

The next step was to develop a medium for transferring the colorless dye solution to the surface of paper. This medium was required to provide intense and complete color development, localized only in the areas being imaged by pressure. The method of applying this medium to paper had to provide uniform coverage and proper adhesion of the colorless dye solution. Poor adhesion would result in evaporation of the medium and loss of the dyes causing premature color reaction when the dyecoated side of the sheet is placed next to the reactant coated side.

After several years of concentrated effort, research scientists developed the process of “microencapsulation,” utilizing principles of colloid chemistry. This unique process permitted placement of the colorless dye solution into millions of microscopic containers, called “capsules.” Microcapsules were the key to development of the new printing system which enabled NCR PAPER, the first carbonless paper for business forms, to be introduced in 1954.

*NCR PAPER is a registered trademark licensed to Appvion, Inc.
What is NCR PAPER Brand?

NCR PAPER brand of carbonless paper is a business forms paper system uniquely coated to transmit an image from writing or mechanical pressure without using carbon paper.

Normal pressure of inscribing impact on the top sheet automatically reproduces data on subsequent sheets within a properly ordered form set.

The system can be used for making handwritten, typewritten or machine-printed copies. It's also adaptable to ribbonless imprinting devices.

An image is created when two separate chemical compounds, coated on the sheets, are brought together. These coatings are colorless. The colored image produced by the union is nonsmearing.

Three different types of carbonless paper — CB, CFB and CF — are used to create a three-ply business form set (please refer to the enlarged photos with supporting text below).

CB, meaning Coated Back, is the original or top sheet of a multi-part form. This sheet is back-coated with millions of microscopic capsules, dry to the touch, but containing a solution of colorless dyes and oils. These materials are permanently sealed within plastic-like capsules, until the capsules are broken by pressure.

CFB coating, or Coated Front and Back, constitutes the intermediate sheets of a multi-part form. The front side has the CF coating, the reverse side has the CB coating. Several intermediate sheets can be used to provide the desired number of copies.

CF, or Coated Front is the receiver part and generally the last ply of a multi-part form. The front side of this receiving sheet is coated with a resin coating which reacts with the colorless dyes released from the broken capsules to develop a color on the CF surface, in the identical pattern of the imaging pressure.

Encapsulation Process

Although there are several variations, the basic process of microencapsulation is as follows: Colorless dyes are dissolved in oils and mixed with aqueous solutions to form large dye-oil drops. By a homogenization process, the large drops are reduced to microscopic dye-oil droplets. Through a patented chemical process, a thin protective wall is deposited and surrounds the individual droplets. The walls are then chemically hardened to form microcapsules, each capsule having a complete, chemical shell.
Carbonless Paper System

Basic System

Coated Back
Coated Front and Back
Coated Front

In a formset, the carbonless plies need to be in the correct sequence of CB — CFB — CF. Should any ply be out of sequence or reversed, the desired carbonless image will not be produced.

Self Contained (SC)

Another type of NCR PAPER brand, termed Self Contained (SC), is made with both the capsules and receiver coating on the same side of a single sheet. Thus, any sheet of paper can be pressure-imaged and the Self Contained sheet beneath will reproduce the image. Self Contained paper can also be used in the original position for ribbonless imprinter applications.
Construction & Verification

Write-Test
A "write test" involves preparing a dummy form in the color and grade sequence to match the proposed form construction. This form should then be imaged by the end user's imaging device. A "Manifold Trial Jacket" (available from Appvion) can be used to carry the loose-sheet dummy form through a printer. The "write-test" will verify the equipment's ability to adequately produce the desired carbonless image on each ply of the form. A manual process, using a pen to image the form ("pen-check", or "pencil-check"), is also recommended as a quick check for correct collation sequence and print side during the manufacturing process.

DocuCheck® Security Papers: Verifying Security Features
DocuCheck® bond and NCR PAPER brand carbonless security papers contain combinations of covert (not obvious) and overt (visible to the naked eye) security features which vary from one DocuCheck product to another. Presence of all appropriate security features should be verified prior to printing.

<table>
<thead>
<tr>
<th>DocuCheck Security Papers, Security Features in Each Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>DocuCheck Products</td>
</tr>
<tr>
<td>Fourdrinier Watermark</td>
</tr>
<tr>
<td>GhostMark™</td>
</tr>
<tr>
<td>Invisible Fluorescent Fibers</td>
</tr>
<tr>
<td>Visible Fibers</td>
</tr>
<tr>
<td>Solvent Reactant Stains</td>
</tr>
<tr>
<td>Oxidant Reactant Stains</td>
</tr>
<tr>
<td>Six Language Chemical Void</td>
</tr>
<tr>
<td>Acids and Alkali Stains</td>
</tr>
<tr>
<td>TonerFuse™</td>
</tr>
</tbody>
</table>

DocuCheck Security Papers

<table>
<thead>
<tr>
<th>Security Features</th>
<th>How to Verify Presence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourdrinier Watermark</td>
<td>Visible in the paper from both sides by transmitting light through the sheet. On the print side, the word DocuCheck should appear as it does in this sentence (make sure the “U” is right side up).</td>
</tr>
<tr>
<td>GhostMark™</td>
<td>Visible on the back side when viewed at an angle using reflective light.</td>
</tr>
<tr>
<td>Invisible Fluorescent Fibers</td>
<td>Visible on both sides only when viewed under an ultraviolet light.</td>
</tr>
<tr>
<td>Visible Fibers</td>
<td>Random distribution visible on both sides.</td>
</tr>
<tr>
<td>Solvent Reactant Stains</td>
<td>Stains appear on both sides when touched by solvents.</td>
</tr>
<tr>
<td>Oxidant Reactant Stains</td>
<td>Stains appear on both sides when touched by bleach.</td>
</tr>
<tr>
<td>Six Language Chemical Void</td>
<td>VOID stains appear on print side when touched by bleach.</td>
</tr>
<tr>
<td>Acids and Alkali Stains</td>
<td>Stains appear on both sides when touched by acids (Ex., drain cleaner, hydrochloric or muriatic acid) or alkali (Ex., household ammonia).</td>
</tr>
<tr>
<td>TonerFuse™</td>
<td>On bond only; print side only. Invisible. Mark both sides of sheet with a magic marker. Ink will bleed through less from the TonerFuse-side of the sheet.</td>
</tr>
</tbody>
</table>

(28#)
Construction & Verification
continued

Intermixing NCR PAPER Brand Carbonless Products
Continual improvements in the design and chemistry of all NCR PAPER brand products are made to meet diverse end use requirements.

- For special purpose applications, the uniquely designed features of NCR PAPER Specialties products may be needed.
- Some NCR PAPER Specialties products are designed to be compatible with other specific NCR PAPER products; consult Technical Services with questions that arise.
- Optional performance is achieved when intermixing of grades is avoided. In situations where intermixing is required, please be aware that intermixing can cause performance variability. Physical and aesthetic differences may be noticeable, and intermixing may cause variation in image intensity, image development speed and image clarity.

Intermixing Other Carbonless Products With NCR PAPER Brand
The specific chemical composition used to produce carbonless paper varies between manufacturers.

- Should intermixing occur, these differences may adversely affect such properties as image intensity, dimensional stability, and Fanapart edge padding.
- Intermixing of various brands of carbonless paper is not recommended.

Note: Intermixing of Appvion eCarbonless paper and NCR PAPER Brand is not recommended.*
Packaging & Handling

Maximum Protection
NCR PAPER brand carbonless CB, CFB, SC and SC•CB rolls are packaged using EcoGuard®, a patented packaging system that provides optimum protection for product and the environment. EcoGuard combines three layers of high-strength Bubble Wrap® material interleaved with stretch film. Tested under rigorous live conditions, EcoGuard offers protection against damage associated with normal shipping and handling. CF rolls are protected by a laminated wrapper since they are less susceptible to pressure damage than CB, CFB, and SC rolls.

In addition, EcoGuard provides a smooth surface that won’t wrinkle or lose its tension over time, so labels lay flat. That makes reading barcodes easier, faster and more accurate, improving your warehouse operations. Product labels can be removed and repositioned on butt rolls, making inventory easier to manage. And each roll label features a die-cut cutturn number that can be peeled off and placed on job jackets, allowing you to trace product throughout your manufacturing operations.

Environmentally Sound
EcoGuard Bubble Wrap material contains a minimum 30% recycled material including 15% post-consumer material. Compared to the foam used in other packaging systems, EcoGuard uses 1/3 less raw materials during the manufacturing process. EcoGuard is produced using air without ozone depleting chlorofluorocarbons.

Clear
All Bubble Wrap material, stretch film and the unitizing stretch wrap are clear. Paper colors are visible, helping to reduce picking errors and increase productivity. Visible damage can be discovered more quickly in both our warehouses and yours, reducing the need for rush order replacement paper when damage is not discovered until the roll is uncovered at the press.

Completely Recyclable
EcoGuard is a completely recyclable packaging system. This includes all packaging materials and labels. This saves you the time and money needed to segregate the stretch wrap or remove the labels when recycling.

Packaging Information

<table>
<thead>
<tr>
<th>Packaging Schedule</th>
<th>Packaging Schedule</th>
<th>Packaging Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roll Width</td>
<td>Packages/Pallet</td>
<td>Roll Width</td>
</tr>
<tr>
<td>6”-6 1/4”</td>
<td>5 (bundles of 2)</td>
<td>9 1/8”-10 3/4”</td>
</tr>
<tr>
<td>6 3/8”-8 1/2”</td>
<td>4 (bundles of 2)</td>
<td>10 7/8”-12 1/2”</td>
</tr>
<tr>
<td>8 1/4”-9”</td>
<td>7</td>
<td>12 3/8”-16 1/4”</td>
</tr>
</tbody>
</table>

CB, CFB and SC Rolls
Bubble/stretch film wrapped and palletized. Palletless shipments also available.

CF Rolls
Standard Package — Stretch Wrapped and Palletized. (Roll widths under 8 1/4” will be wrapped two rolls/package). Palletless shipments also available.

& Bubble Wrap is a registered trademark of Sealed Air Corp.
Recycling

Carbonless Paper Recyclability

All NCR PAPER brand carbonless products are recyclable. Recyclability is one of the primary advantages that NCRPAPER brand has over carbon paper. Carbon paper is not recyclable in the normal wastepaper stream. NCR PAPER brand wastepaper from forms manufacturing is typically sold to a wastepaper dealer who may require the waste to be segregated. While some paper waste is unavoidable when producing business forms, Appvion is dedicated to helping our customers minimize waste and improve production efficiencies. For consultation regarding waste reduction and production improvements, please contact our Technical Services Department.
Handling
NCR PAPER Brand

Common Sense Carbonless Roll Handling

- Avoid dropping or bumping rolls.
- Avoid rolling rolls over small, hard foreign objects.
- Never roll or clamp an unwrapped roll.
- Never store any product on its round side or directly on the floor.
- Use a sponge rubber pad when tipping rolls to the round side.
- Install indoor/outdoor carpet at the ends of presses to cushion rolls placed on their round side.
- Use minimum clamp pressure - just enough to safely lift rolls.
- While rotating a roll, make sure there is adequate clearance between the floor and outer edge of the roll.
- Use caution when removing the unitizing stretch wrap used to hold rolls to pallets, to avoid cutting into the roll.
- To avoid edge damage on palletless loads, lower loads slowly and evenly to the floor.
- Clamp truck clamp pads should be padded with a 70 durometer, 1" thick, Urethane Elastomer padding material.

- Clamp trucks should be equipped with a 3-position pressure relief gauge.
- Remove all burrs from clamps periodically.
- Keep fork blades from extending beyond the pallets to avoid damaging products directly behind the load.
- Repair or replace damaged pallets. Hammer-in all exposed nails.
- Never push multiple pallets with the fork lift.
- Always stack loads on level surfaces.
Handling Accessories

There are several accessories which can be used in conjunction with other equipment to simplify handling and reduce the possibility of damaging the pressure sensitive CB, CFB or Self Contained.

Some accessories are available from materials handling equipment manufacturers while others must be designed and built to meet specific requirements. Selection or design of any device will depend on the handling needs of the particular operation. Some roll handling devices do not exert pressure on the outer wraps, such as:

Expanding Core Plug — a mechanical center lift enables a roll to be lifted and handled with the flat side parallel to the floor. CAUTION: This device may cause telescoping or pull out cores if the rolls are handled in a rough or jerky manner.

“C” Hooks and 90˚ Elbows — lift and handle rolls with their flat side perpendicular to the floor. These can generally be fabricated by local machine shops and their dimensions vary depending on the roll sizes most commonly used.

Narrow forks or special attachments for lift trucks enable rolls to be handled with their flat side perpendicular to the floor. Smooth flat metal plates attached to forks of lift trucks enable rolls to be handled with the flat side parallel to the floor.

Some devices require tipping the rolls over manually as they do not have a mechanical upending feature. We recommend that a one or two inch pad of medium density sponge rubber be placed under the roll before tipping it over.
Storage & Conditioning

Storage
Rolls should always be stored on end to avoid paper damage caused by localized pressure. This also reduces the possibility of developing flat spots in the rolls. Rolls should not, however, be stored in direct contact with the floor—especially a damp floor.

As a matter of good inventory practice, NCR PAPER brand should be used on a first-in first-out basis. Any butt rolls in stock should be used before opening new rolls. We recommend that butt rolls be re-wrapped for protection during storage.

Conditioning
Unless the temperature and relative humidity are the same in the paper storage area and pressroom, wrapped rolls should be stored in the pressroom prior to processing, away from heaters or cold walls, in accordance with one of the following charts:

Temperature Conditioning Charts for Paper

<table>
<thead>
<tr>
<th>Volume of Paper† on Skid, in Case or in Roll (cubic ft.)</th>
<th>Difference in Temperature(°F) of Paper and Temperature of Room in Which it is Opened</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>10° 15° 20° 25° 30° 40° 50° 60°</td>
</tr>
<tr>
<td>12</td>
<td>5 9 12 15 18 25 35 54</td>
</tr>
<tr>
<td>24</td>
<td>11 16 23 28 35 48 67 100</td>
</tr>
<tr>
<td>48</td>
<td>14 19 26 32 38 54 75 109</td>
</tr>
<tr>
<td>96</td>
<td>15 20 27 34 41 57 79 115</td>
</tr>
</tbody>
</table>

†Volume of a Roll (cubic ft.):
[3.14159 x (roll radius‡ inches x roll radius inches) x roll width] ÷ 1,728.

‡radius = ½ diameter

Volume of a Case (cubic ft.):
(Length inches x width inches x height inches) ÷ 1,728.

EXAMPLE: A 10½” wide roll, 36” in diameter (6 cubic feet, using the formula); coming off a 30°F truck into a 70°F pressroom (40°F temperature difference); will require 25 hours of conditioning.
Unwrapping & Relative Humidity

Wrapping or packaging, like storage and conditioning, can affect a roll's eventual performance on press.

- EcoGuard wrapping should not be removed until the roll is ready to be printed on.
- If a delay between processing steps is necessary, we recommend that the rolls be covered to minimize the effects of changing humidity in the processing or storage areas.
- NCR PAPER brand of carbonless paper is manufactured to be in equilibrium at 71 degrees F and 45% RH.
- For ideal pressroom performance, the printing plant should be controlled to match these temperatures and RH values.

- Proper conditioning of paper will alleviate some of the problems caused by fluctuating RH, but nothing short of humidity control in the pressroom itself can eliminate them.
- It is very important that the relative humidity (RH) be maintained above 35% RH during the heating season (air drying) to reduce abnormal static and paper stretch problems.
- Refer to the tips on page 13 for handling unwrapped rolls.
Printing on Business Forms Presses

Infeed and Unwind
The infeed or unwind stand of a web press holds the roll (or rolls) of paper being fed into the printing units of the press. The following suggestions, while specifically recommended for NCR PAPER brand carbonless may apply equally well to the running of bond papers.

- Medium density sponge rubber or indoor/outdoor carpet should be placed on the floor underneath the unwind and rewind stands to provide a cushioned surface on which the rolls may be placed.
- Do not remove the roll wrapper until the roll is to be placed on the unwind shaft (see page 16). Carefully check the stock to confirm the correct unwind direction.
- Write-test the paper to verify correct stock and that printing side is up (see page 8).
- Re-wrap a butt roll before returning to inventory.

Additional Precautions
The dimensional condition of the roll can be easily evaluated during the unwind operation.

- Sudden "jerky" motions observed with each revolution of the roll are typical of an out-of-round roll.
- Since storing rolls on the round side can cause this condition and associated feed problems, it is recommended that rolls be stored on end.

Caution should be taken when using clamp trucks.
- Failure to clamp the roll evenly or the use of excessive pressure can result in rolls that have flat sides.
- This can cause wobble when on press.

Like many paper roll products, NCR PAPER brand is wound tighter at the core than it is away from the core.

- This procedure usually eliminates the problem of core slippage.
- During the unwind and throughout the printing operation, use the minimum tension necessary to prevent offsetting and capsule damage.

Check condition of roll before loading it into the infeed section of forms press.
Offset Printing

Most forms produced on NCR PAPER brand are printed by the offset lithography process.

The printing unit of a web offset press consists of a plate cylinder, a blanket cylinder, an impression cylinder, an inking system for each color and a dampening system.

Pressure Indicator
The blanket gap space on web offset presses can be used as an indicator of capsule damage on CB and CFB grades.

- This narrow gap shows up as an uncolored line across the web when sprayed with Instant Replay II (an aerosol containing CF).

- Excessive squeeze between the blanket and impression cylinders causes a breakage of the CB dye capsules.

- When the CB surface is sprayed with Instant Replay II, the damaged areas will turn blue or black depending on the dye system.

- A comparison of the printed and unprinted samples will indicate the degree of damage caused by excessive impression pressure.

- This comparison will serve as a guide when "backing off" on the impression setting to minimize capsule damage.

Caliper Variation
Various grades such as CB, CFB and CF in the bond weights are of slightly different calipers. Knowledge of these variations is helpful when adjusting the impression setting at the printing nip.

- Different calipers must be considered when changing from one grade to another on the press.

- Changing from CF, a lower thickness, to CFB, without resetting the impression, could cause capsule damage.

- The procedure, which should be followed, is to take the impression completely off and bring it back gradually to the desired impression level.

General Precautions
A number of general rules should also be followed when printing NCR PAPER brand:

- **Make sure the form rollers are not set too hard against the plates.** This tends to make them bounce against the leading edge of the plate as they pass the cylinder gap. This bouncing ruptures their ink film from end to end producing a streak that is transferred to the plate and subsequently to the paper.

- **Tighten the blanket.** A loose blanket may tend to follow the plate and slip on the blanket cylinder. This intermittent slippage will also cause streaks.

- **Check the condition of the plate cylinder to ensure an even impression.** Also, check the offset blanket for thickness uniformity.

- **Set ink stripes according to the press manufacturer's guidelines.** Improper setting of the press can cause toning, ink emulsification, premature plate and roller wear and picking problems on press.

For further information concerning Instant Replay II and its uses, please refer to page 53, of this manual.
Printing Inks

The standard inks available for forms printing are generally comprised of a pigment, a vehicle and certain additives.

NCR PAPER brand can be printed with most quality inks normally used by the printer to produce business forms.

Ink Pigments
The pigment is finely ground solid particles suspended in the vehicle that impart color.

- Pigments also contribute to many other properties of the ink, such as specific gravity, opacity or transparency, and permanency to light, heat and chemicals.
- They usually determine the resistance of a print to bleed in water, oil, alcohol, acid or alkali.

Ink Vehicles
A vehicle is the liquid portion of an ink that carries the pigment and binds it to the paper after the ink has dried.

- Varnish, obtained from linseed oil, soy oil, and other blends of agra oils are the most widely used vehicle in business forms inks today.
- Other common oils such as cottonseed oil, castor oil and fish oil are also used as ink vehicles.
- A combination of certain synthetic resins with a vehicle will produce many specially desired properties.

Ink Additives
Ingredients such as driers, waxes, lubricants, gums, starches and wetting agents are used to impart special characteristics.

- Driers, for example, act as catalysts to speed the oxidation and drying of the varnish.
- Lubricants will reduce the tack of the ink and cause it to set quickly.
- Additions must be carefully controlled in the pressroom, since each pigment-vehicle combination will behave differently.
- It is advisable that the ink manufacturer be consulted before altering the ink.

Ink Feed
The inking system (Figure 1) for each offset printing unit consists of an ink fountain, fountain roller, doctor roller, three or four oscillating (vibrator) rollers, four or more distributor rollers and two, three, or four form rollers. It is not necessary to make any changes or additions to this basic system when running NCR PAPER brand.

Ink Tack
One of the most important physical characteristics of ink in relation to NCR PAPER brand is the "Ink tack".

- Ink tack is a measure of the resistance of an ink film to being split (Figure 2).
- The number, such as 10 tack ink, is a value assigned to (Continued on next page)
represent the force required to split the ink film.

- If the force required to split the ink film is greater than the force required to pull the coating from the base paper, the coating material will be physically picked from the sheet.
- The coating that is removed from the paper can build up on the blanket, plate or elsewhere in the inking system and create major problems.
- With the wet offset process, we recommend the use of a 10 to 12 or lower tack ink, based on a GATF inkometer reading at medium speed.
- If using the dry offset process, we have found a 5 to 7 tack ink works better.
- Inks with a higher reading can create problems. Care should be taken to assure stripe settings are at manufacturer's specifications.
- We recommend that ink be used "straight from the can." However, if a reducer is needed, we suggest that you contact your ink supplier for specific recommendations.
- The use of a non-compatible tack reducer can cause offsetting in the roll, ink bleeding through the finished form or failure of the ink to dry.

Ink Stability

A subject closely related to tack is ink stability.

- Ink stability is the ability of the ink to maintain its physical and chemical properties throughout the inking system until it reaches the paper.
- Changes in the stability can be created by contact with the atmosphere, when the film is split, or by water logging.

When printing a coated sheet such as NCR PAPER brand, some of the coating materials may be removed from the sheet and work their way back into the inking system.

- If this occurs, there are usually several physical and chemical changes that take place in the ink such as an increase in tack and/or an increase in viscosity.

This brings up another important point — changes in viscosity do not necessarily mean changes in tack.

- Due to the physical and chemical makeup of ink, viscosity and tack are not always related.
- It is for this reason that instruments should be used to measure tack since a visual examination may not be able to accurately determine the tack level.

If the ink laydown is not of the best quality, the back cylinder pressure may have to be increased to help create a better image.

- In doing this, however, care must be exercised not to create too much pressure on the paper as this could cause damage to the pressure sensitive capsules of CB, CFB and Self Contained.
Printing Inks

Ink Drying
Poor ink drying is the cause of many printing problems. When printing coated sheets such as the CB sides, it is particularly important to take precautions to insure proper drying.

Ink Driers
There are two types of driers added to inks: internal driers and external, or top driers.

- Internal driers dry from the inside out and top driers dry the surface of the ink.
- When ink drying problems occur your ink supplier can adjust the amount of driers to match your needs.
- It is not recommended that driers be added by the printer unless specified by the ink manufacturer.
- There is a point when too much ink drier will extend drying times.

Fountain Solution
Fountain solutions can retard drying in inks.

- If the pH of the fountain solution is too acid for the ink (generally 4.5 or more acid) or if the ink is contaminated, it will stay open longer. This could lead to offsetting, tracking and other problems.
- Other ink drying problems created by an improper fountain solution are ink emulsification and over-wetting of the paper so it will not accept ink as well.

Ink Film
Too dense an ink film will create drying problems.

- Higher pigmented inks will allow the printer to get good color without laying down too much ink.
- The thinner the ink film the faster it will dry.

Precautions and Tips
Although it is generally true that standard inks used with conventional printing processes are suitable for NCR PAPER brand, observation of the following guidelines can help avoid problems related to carbonless paper and ink.

- An ink of reduced tack will minimize coating-pick or loose material pick-up.
- Certain formulations of inks may develop a halo as the ink components separate. (A simple change in ink formulation should correct the problem. The ink manufacturer involved should be contacted regarding the recommended change.)
- Inks that dry by oxidation/evaporation should be used for backprinting (printing on the CB side of the sheet).
- The ink stripe on the ink form roller should be of the manufacturer’s recommended width and uniform across the roller. This ensures uniform ink laydown, color density and coverage.
Dampening Systems & Fountain Solution

Dampening Systems
Web press dampening systems are essentially the same as those on sheet fed presses. Although there are no specific precautions in the area of plate dampening when printing on NCR PAPER brand, a higher degree of quality is realized when:

- Dampening rollers have a uniform pressure from end to end.
- All rollers are set to manufacturer's specifications.

Fountain Solution
There are no special requirements for printing NCR PAPER brand carbonless. Fountain solution plays a key role in quality and performance using a wet offset printing process. The choice of fountain solution is the first step in a properly balanced water system. A good solution should meet the following criteria to get the best results:

- It should be pH buffered to match the recommended pH level of the plate and the ink you are using.
- It should be formulated to match the hardness of the water with which you mix your solution.
- To achieve best results with alcohol substitute fountain solution, manufacturers recommend the use of chillers to chill the fountain solution to between 50-55°F.

pH Buffer
Most fountain solutions are designed to buffer out at a preset pH level and hold that level. The buffer acts like a sponge to absorb any chemical which is a different pH, either more acid or more alkaline. The buffer will control the pH to the level it is designed to handle until the buffer is exhausted. At that point the fountain solution is no longer able to tolerate outside chemicals and the pH will start to change.

Too acid conditions can cause the following problems:

- Toning due to etching of the plate.
- Ink drying is retarded.
- Ink will emulsify.
- Ink rollers will not accept ink, stripping.
- Plate wear is accelerated.
- Plate will not accept ink or have low contrast, blinding.
- Ink color changes may occur if too acid a condition exists.

Too alkaline conditions can cause the following problems:

- Plate wear.
- Toning/tinting of plate.
Dampening Systems & Fountain Solution
continued

Conductivity
Conductivity is the ability of a solution to conduct an electrical charge. Conductivity is a measure of the amount of available ions present in the solution. The more available the higher the conductivity. Conductivity is measured in micromhos by a meter. In the printing process, a workable conductivity range is determined by the requirements of the plate being used, the base water used, the inks and the type of dampening system.

There are both good and bad dissolved ingredients (ions) which are measured when a conductivity reading is taken. The good components are from the fountain solution and are used to clean the plate. The bad components are contaminates which are collected in the printing process. These contaminates raise the conductivity in a negative manner and create printing problems.

What is an ideal conductivity?
Only you can determine that. What works for you is correct. But to determine a starting point:

■ Contact your plate and ink suppliers and ask for the ideal pH & conductivity range for the plate and ink being used.

■ Take a gallon of your water and add ½ ounce of fountain concentrate per gallon, mixing well. Take the pH and conductivity reading. Repeat for 1 oz/gallon, 1½ oz, 2 oz. etc. up to 8 oz.

* Plot the results on the following graph:

![pH & Conductivity Graph]

<table>
<thead>
<tr>
<th>pH</th>
<th>Conductivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4000</td>
</tr>
<tr>
<td>1.5</td>
<td>3700</td>
</tr>
<tr>
<td>2</td>
<td>3500</td>
</tr>
<tr>
<td>2.5</td>
<td>3300</td>
</tr>
<tr>
<td>3</td>
<td>3100</td>
</tr>
<tr>
<td>3.5</td>
<td>2900</td>
</tr>
<tr>
<td>4</td>
<td>2700</td>
</tr>
<tr>
<td>4.5</td>
<td>2500</td>
</tr>
<tr>
<td>5</td>
<td>2300</td>
</tr>
<tr>
<td>5.5</td>
<td>2100</td>
</tr>
<tr>
<td>6</td>
<td>1900</td>
</tr>
<tr>
<td>6.5</td>
<td>1700</td>
</tr>
<tr>
<td>7</td>
<td>1500</td>
</tr>
</tbody>
</table>

KEY: ■ - pH * - Conductivity

■ From the graph you can determine if the fountain solution is properly buffered to match your plate and ink. Also you can decide if what the proper number of ounces per gallon is best for your shop.

Process Control
Once the proper fountain solution and the mixture has been determined, the next step is to maintain that level and know when to change the solution.

A regular schedule of changing the solution and cleaning the tanks should be set up.
Plates

The lithographic plate is different from other mechanical printing plates.

- The litho plate is planographic, that is, the image and non-image areas are essentially on the same level.
- The image areas are not raised as in letterpress, nor depressed as in gravure printing.
- The image areas are simply ink-receptive areas surrounded by water-receptive (ink-repelling) areas.
- When moistened, the water-receptive areas refuse to take ink, while the image areas repel the water.
- The printing cycle consists, therefore, in:
 1. dampening the plates non-image areas,
 2. inking the imaging areas, and
 3. transferring the ink from the image areas to the blanket from which the image is offset onto the paper.
- Water flow should be sufficient to keep the plate clean from and minimize tinting or toning.
- Excessive amounts of water carried by the plate can lead to ink/water emulsification and tinting.

Plate Life and Performance

Properly developed plates are necessary to ensure optimum printing results.

- Plates must be well desensitized in the non-image areas to prevent scumming.
- Image areas of the plate should be developed to produce a solid 6 or 7 on a gray scale to ensure against premature image breakdown.

When printing CF, plate life is comparable to that obtained with other coated papers. The uncoated printing side of CB should perform comparable to a regular forms bond.

Another determinant of plate life and performance is the fountain solution.

- An improperly balanced or mixed fountain solution can contribute significantly to reduced plate life.
- The pH of the fountain solution regulates the amount of gum arabic available to the non-image areas of the plate.
- Each plate manufacturer has set the ideal operating ranges for pH and conductivity for their plates; the fountain solution should be filled to match these recommendations.
Blankets

Blankets have a direct effect on the quality of your printing. The best assurance for quality blankets is to buy from a reputable firm.

- An offset blanket is wrapped around the cylinder and held with sufficient tension or adhesive to prevent slippage during printing.
- The most commonly used offset blankets consist of several plies of long fiber cotton fabric calendered together with a special rubber cement and then coated with a rubber compound on one side.
- The thickness of the individual rubber layers vary according to press specifications and requirements.
- A clean, properly cared-for blanket should be used at all times. However, if the blanket becomes tacky, an application of blanket powder (available from blanket suppliers) or talcum powder is helpful in preventing the web from sticking to the blanket.

Compressible Blankets

To minimize capsule damage, the use of compressible blankets is recommended.

- The compressible blanket contains tiny air pockets into which the blanket fibers and rubber can be displaced under pressure.
- The material that forms the walls of these air voids in the compressible blanket will act as tiny springs that contract under pressure, then regain their original form rapidly when the pressure is removed.
- Lateral flow, which is the displacement of a blanket on both sides of the pressure point, is found only with non-compressible blankets.

- Lateral flow can cause blanket bounce or blanket chatter at the printing nip and ultimately damage the CB capsules.
- Lateral flow is reduced by using compressible blankets.
- Compressible blankets usually have a more even caliper across the web, which reduces concentrated pressure points, and produces more uniform ink coverage and better release.

General Information

Here are some helpful hints pertaining to blankets when running NCR PAPER brand:

- Sponge the blanket with water after every washup so the blanket surface does not lose its ink receptivity by becoming glazed or hard. This will keep the printed impression from gradually losing its sharpness.
- To avoid horizontal streaks in the printing, make sure the blanket is kept tight. A loose blanket tends to follow the plate and slip on the blanket cylinder. Remember, the greater the plate-to-blanket pressure, the worse the slippage.
- Check the squeeze between blanket and plate frequently to make certain it is within the accepted tolerance of .002" to .003"
- Mylar or uniform packing should be used as packing material whenever possible. Use one sheet to build up the desired packing thickness — at least for thinner packings, because two sheets may slip and wrinkle.

Press Blankets can swell due to a reaction with capsule oils and/or blanket cleaning solvents. As this swelling occurs, excessive pressure may be exerted to the stock damaging more capsules. It may be necessary to change the type of blanket used to one which is resistant to oils. A number of blanket companies have developed such blankets.

Blanket swell can be identified by you both visually and by running your hand over the blanket. If the printing image feels embossed, or like braille, it is likely blanket swell has occurred.

The capsule damage indicator spray, Instant Replay II can help identify this condition.
Line Hole Punching & Perforating

Line Hole Punching
Rotary line hole punch rings and punches have recently changed. Adjustable punching systems using unserrated punches are available for most equipment.

For other systems certain steps are taken to insure maximum performance:

- Use serrated punches to provide a greater cutting surface and minimize dulling of the punches. Domed serrated punches have proven useful because they insure deeper penetration of the punch into the die and allow more metal for piecing.
- Change punches as damage occurs. Dies should be changed on a regular schedule. Most manufacturers of punches recommend changing all the dies in a ring at one time.
- Check backlash gears for seating on a regular schedule and adjust if necessary.
- Consult with your punch manufacturer for the correct hardness and length. Too short a punch will cause hanging punches and too soft a metal will cause premature dulling.
- Serrated punches and dies should be well maintained to ensure clean, sharp punch-outs and prevent a “halo” of carbonless imaging to occur around the punched holes.

The standard sizes of rotary file hole punches normally function well with NCR PAPER brand carbonless.

Perforating
NCR PAPER brand generally gives perforation results similar to uncoated forms bonds.

- The basis weight of carbonless paper includes the weight of the coating. This means that a given basis weight (when compared to an uncoated forms bond of the same weight) has less fiber content and less perforation or tearing strength.
- A longer bridge may be required to give perforation strengths comparable to an uncoated forms bond having the same basis weight.
- The perforating wheels and blades should be kept sharp at all times.
- Periodic inspection of the anvil cylinder or the surface with which the perforating blade or wheel comes in contact is recommended.
- There often are guide wheels connected with perforating equipment that can apply heavy pressure which may damage the carbonless paper pressure-sensitive back coatings.
- If guidewheel pressure damage occurs, reduce the pressure applied by the wheels, change them to a soft solvent resistant rubber, or move them to an area of the form that will not be used by the customer.

Delivery & Rewind

A properly wound roll, which has been handled carefully, will perform well on the press and reduce delivery-related problems.

- During unwind and throughout the printing process, use the minimum tension necessary to prevent offsetting and capsule damage.
- Frequently run your thumb up the side of both the unwind and rewind rolls to determine if the tightness is about the same. This will help web tension throughout the printing stages and reduce misregister problems resulting from excessive sag or pull.

- It’s important to match (but never exceed) the winding tension of the mill roll. Excessive rewind tension may damage the pressure sensitive coatings.
- If you still find that the web sags going into the folder or rewind stand, check the blankets to make sure they are not overpacked.
- Delivery and rewind will be made much easier if the unwind roll is free from defects.
Screen Tints

Printing inks, when applied to either the CB, CF or SC surface with heavy coverage such as in a screen or solid, can reduce intensity of NCR PAPER brand carbonless imaging in that area. This is objectionable only where the printed area is also a writing area. The reduced intensity occurs because some printing inks can cause a physical blocking between coatings. Certain inks will cause more difficulty than others. For example, gloss inks that dry with a hard, continuous film cause a carbonless image with reduced intensity.

To minimize intensity reduction of NCR PAPER brand carbonless imaging:

■ Maintain a very thin film of ink. Heavily pigmented inks, applied to the paper in the smallest practical amount, will generally give best results.

■ Generally, use an 85 to 133 line screen at 10%-20% density for best results.

■ Use ink colors other than blues or blacks that may be close to the hue of the carbonless image color.
Desensitizing Ink

Restriction of NCR PAPER brand carbonless imaging can be accomplished by printing a desensitizing ink on the CF, or CF of CFB, surfaces. When applied properly, this ink will deactivate a selected area of the CF surface. Desensitizing ink may be applied by either wet or dry offset printing.

- Desensitizing inks must be restricted to CF, or CF of CFB, surfaces only. They will not work on CB or Self Contained surfaces.
- For maximum uniformity of coverage and minimum chance of tracking, spraying and ink starvation, ink coverage on the printed form should be restricted to the inking capabilities of the individual press.
- Ink coverage utilizing 60% or less of the area around the plate/blanket cylinder is a good guideline to follow.
- Small areas may become partially desensitized if they are surrounded by large desensitized areas with heavily inked rollers.
- Do not print desensitizing ink on stub areas, areas that are fastened to other form parts with hot or cold melt glues, or on portions that might be subjected to Fanapart Padding Adhesive.

Complete effectiveness against detection of information cannot be guaranteed.

- Embossment from business machine, typewriter or hand impression may be legible.
- Obscure legibility may result from paper compressibility or breaking of ink continuity.

Desensitizing Tips
Production of business forms containing desensitized areas can be improved as follows:

- The printing unit should contain a good ink distribution system with seven or more rollers and it should employ an agitator. Without the agitator, ink may tend to back away from the fountain roller.
- A thorough washup of inking rollers is required before and after use of desensitizing ink, to remove residual ink and roller glaze.
- Desensitizing ink is tacky and can pick foreign particles from rollers, which may cause a tinted effect if prior ink particles are present.

- Desensitizing ink can be washed away with water and a mild liquid soap solution.
- Two or more like-new form rollers should be used. Scored or uneven rollers may cause a variation in laydown. Adjust rollers to the manufacturer’s recommended settings.
- Coverings on all rotary press idler rollers after the desensitizing ink station should be in a like-new condition. Worn nylon loop, aluminum-grated or safety walk roller covers may pick off part of the ink film and cause undesirable tracking and desensitization.
- Desensitizing ink must be the last ink printed. Regular inks should not be printed over wet desensitizing inks, for they will not trap well.
- Any ink overprinted by desensitizing ink must be of a quick-set variety to prevent bleeding of the color through the desensitized area.
- Desensitizing ink should not be modified without prior consultation with the manufacturer. Changes in formulation may affect the ink’s ability to desensitize.
- For complete desensitization, an adequate amount of ink laydown is necessary. To achieve this heavy laydown, it may be advisable to set the fountain roller for maximum doctor dwell. The fountain keys should then be used to regulate ink feed and resulting laydown.
- Reduced press speeds are usually necessary to assure adequate ink coverage and eliminate tracking. On web presses, 300 FPM is an average running speed.
- Black print carbonless may not desensitize as well as blue print carbonless.
- Lighter weight stock, such as 12.5# CFB, does not desensitize as well as heavier grades.
- The end-user should be aware of the embossment and glassining which may occur under actual form usage.
- The desensitized ply should be placed as far down in the form as possible to reduce the embossment and glassining effect.

Contact your ink supplier for more information on the use of desensitizing ink.
Backprinting

Backprinting can be used to show additional information on the back (CB) side of the sheet. For example, the terms and conditions of a contract could be backprinted.

To ensure good printing without damage to the CB capsules, certain precautions should be taken:

Copy:
- Whenever possible, screen copy to reduce coverage.
- Whenever possible, avoid large solid areas, logotypes or trademarks with heavy coverage.

Printing Method:
- Use Instant Replay II spray to detect capsule damage. The release of capsule oils will mix with the inks creating a chemical reaction. They will also retard the drying of the ink which leads to set off and tracking.

Inks:
- In order to ensure good drying, only use an ink formulated specifically for carbonless backers (an ink that dries by oxidation/evaporation).
- Use a minimum ink film thickness. Whenever higher pigmented inks are used, the ink film can be run thinner and yet have adequate coverage.
- Inks with a high soy content have been found to react with carbonless coatings. Lower soy contents, other agra based inks and petroleum ink give best results.

Fountain Solutions:
- Maintain a pH and conductivity compatible with the ink and plate. A fountain solution which is too acid or too alkaline will retard in drying.

For backprinting use light-face type or screened images.

Tinting

Although there are several on-press tinting systems available, Appvion does not endorse or warrant their use on NCR PAPER® brand.

- Image intensity and stability can be affected by tinting.
- Variations in the tint shade may also be seen.
- Variations can occur from front to back of the sheet and from grade to grade because of the different surface characteristics of the grades being tinted.
- Please contact Appvion’s Technical Services Department if you have additional questions.
Dry Offset CF Ink

Introduction
CF Ink is a CF coating applied in an area to produce the CF ply of chemical carbonless forms. CF Ink can be applied to the paper base of your choice (see page 32). This ply can then be used in conjunction with NCR PAPER brand of carbonless paper CB (coated back) and CFB (coated front and back).

- CF Ink must be applied by the dry-offset or letterpress printing process as the last color down using a full offset tower inking system or equivalent rubber tower.
- CF Ink can be applied on the maximum size solid your press will print without form roller starvation (mechanical ghosting).
- Should starvation occur, consult press manual or press manufacturer.
- CF Ink is compatible with both Blue Print and Black Print grades of CB and CFB NCR PAPER brand.
- NCR PAPER brand “Spot Safe CB” is specifically designed for printer-applied CF ink applications.
- Questions or inquiries regarding the CF Ink product itself can be directed to Technical Services.

Storage and Handling Information

Shelf Life
- CF ink should be used within six months of receipt.
- Forms produced containing CF ink printed parts should be used within two years of production.

Ink Storage
- Normal climatic conditions will not affect CF ink.
 If stored or received in adverse conditions, bring ink to pressroom temperatures before use. Do not store above 140° fahrenheit.

Precautions
- Do not use any additives with CF ink. Any additions will change the performance of the ink and result in a decline of functionality.
- Other than with NCR PAPER Spot Safe CB, CF ink applied on a bond weight CB sheet may cause unwanted color development.
- Forms produced with CF ink printed plies cannot be fanapart edge padded.
- Certain substances have been identified which can adversely react to NCR PAPER brand CF surfaces and CF Ink. These include unapproved carbons, shrink wraps, wet toner copiers, etc.
- Incompatible paper basestocks may result in imaging outside of the non-inked areas. See page 32 for further information.

Press Instructions Dry Offset Applications Only

Full Printing Tower Preparation
- Color wash rollers — residual ink will contaminate CF ink.
- Roller stripe settings should be set to meet manufacturer’s specifications. Proper CF Ink settings should be 1/8 inch to the plate. Stripes must be uniform across the printed web to ensure proper laydown. Improper roll settings may cause piling.
- Plate and blanket cylinders should be packed to ensure proper printing nip squeeze.

Idler Rolls
- Must be free turning.
- Must contain like-new roller covering. Worn or contaminated covers can promote tracking.

Ink Preparation
- Ink should be at pressroom temperature.
- Agitate ink in can.
- Fill fountain.

Ink Film Adjustment
- Set fountain keys for normal ink flow to image area.
- Set doctor roll dwell to near maximum.

Run at desired speed to check ink film laydown
- See page 31 for measurement of ink laydown.

(Continued on next page)
Dry Offset CF Ink

continued

Running Conditions

- Maintain full fountain to eliminate skip coating.
- Check for tracking on idler rollers which can be caused by:
 - Heavy, first-down colors wet picking.
 - Heavy CF ink film.
 - Worn or contaminated idler roll covers.
- Check for misting which can be caused by too short of a doctor roll dwell or too heavy of an ink film.
- Fountain agitator is desirable, if not available, press operator must periodically manually agitate ink in fountain.

Registration and Laydown

Since CF Ink is a clear ink film, it is difficult to identify its location once it is on the paper.

- Check for registration and CF Ink laydown using CF Indicator spray.
- The spraying of the CF Indicator on to the sheet being printed will show color development in any areas where CF Ink has been applied.
- CF Indicator will also show ink tracking, voids in the ink laydown and any extraneous ink that has transferred onto the printed sheet.
- To check the amount of CF Ink laydown, compare the sprayed area to the CF Ink Color Standard (see page 24).
- The blue color of the CF Ink area should meet or exceed (be darker than) the color shade of the CF Ink Color Standard.

- A check of color hue on a reflection densitometer using the blue color setting can also differentiate CF Ink laydown amounts.
- Questions regarding the use of a densitometer for this purpose should be addressed to Appvion, Inc. Technical Services.

Image Development

To check that the amount of CF Ink that has been applied is sufficient, the following method is recommended.

- Obtain sheets of the NCR PAPER brand CB surface that will be used to image the CF Ink surface when the form is collated.
- Place the CB surface in contact with the CF Ink surface and write on the form so that an image will develop on the CF Ink surface.
- Evaluate the image to determine if it is an acceptable image for your customer. Note: the ability of CF Ink surface to make an image will decline slightly once the CF Ink has dried completely.
- Make sure that the image that you initially obtain is slightly better than you need.
- When acceptable image levels are obtained, the following conditions are usually met:
 - CF Ink film thickness — .3 to .4 mil laydown
 - One lb. CF Ink covers approximately 300,000 sq. in.
- Remember, you are responsible for applying enough ink to produce an acceptable image for your customer.

(Continued on next page)
Dry Offset CF Ink

continued

Paper Basestocks

NCR PAPER brand “Spot Safe CB” is specifically designed for printer-applied CF Ink applications.

Printers are free to use the basestock of their choice, however, some general guidelines are recommended. These guidelines are listed primarily to ensure selection of a good basestock for best ink laydown and press run performance for desired carbonless imaging capability.

- The paper base should be relatively free of excessive pinholes, dirt, fuzz, slime spots, wrinkles and other visual defects.
- The paper should be uniform in basis weight, smoothness, caliper, formation and shade.
- Rolls must be true and uniformly wound with clean slitter edges free from dust and fiber particles.

One primary consideration that must be followed when choosing a basestock is the pH or acidity/alkalinity of the paper.

- Upon imaging an acid sized base, a latent image may occur.
- You can write test using a CB sheet on your basestock to be printed.
- An alkaline sized base will reduce this reaction. However, due to the CB dye oils in the mated sheet, there will always be a slight image in the non-inked areas of an acid sized base.
- Because of the chance for latent imaging in acid sized bases, we cannot guarantee a specific basestock manufacturer but only recommend those that appear to have less imaging in the non-inked areas and acceptable imaging in the inked areas.
- It may also be noted that the bond manufacturers may periodically change their paper formulations without our knowledge.

CF Ink performs best on plain bond, however special bases such as dry-gummed or pressure sensitive papers can be used.

- It is possible that the special coatings on some basestocks can adversely affect the CF Ink and its imaging capacity.

Different basestock characteristics may require some ink film adjustments.

We suggest submitting samples of the desired basestock before applying CF Ink for a compatibility study.

- One dozen 8 ½” x 11” paper samples are required for lab testing.
- Please submit the samples to:
 Appvion, Inc.
 Technical Services Department
 825 E. Wisconsin Ave.
 P.O. Box 359
 Appleton, WI 54912

CF Ink Color Standard

CF Ink area sprayed with CF Indicator Spray should approximately match the intensity of Pantone®** 279.

Evaluation Instructions

- Spray CF Ink area with CF Indicator Spray.
- Place printed sample side-by-side with this color standard.
- If blue color development is lighter than this color standard, more ink should be applied.
- If blue color development is equal to or darker than the color standard, the CF Ink surface should be capable of developing an acceptable image. (Note: your customers’ needs may vary depending their application.)

*Pantone, Inc.’s check-standard trademark for color reproduction and color reproduction materials.
Collating, Perforating & Slitting

Collating
Most of the recent commercially available collators pose little or no difficulty running NCR PAPER brand, providing certain precautions are taken.

- To avoid damaging CB capsules, all feed and guide mechanisms, impression rolls, or any other points where the paper is contacted by the collator, should be set to the lowest pressure consistent with satisfactory performance.
- This also applies to dancing idlers or other devices used to control web tension.
- Rewind tension on the press should be set to produce soft rolls (just hard enough to prevent telescoping).
- Reducing rewind tension for CFB rolls, will help to reduce unwanted color development (smudge) between the mated surfaces in the rewound roll.

Paper should be collated as soon after printing as possible.

- Keeping dwell time in collator rolls to a minimum will reduce smudge.
- Most printers run the CFB parts last to minimize the time between printing and collating, since damage to this grade by the press can result in some smudge in the rewind roll.

If capsule damage occurs (indicated by color development on CF surfaces of the finished form) after these precautions have been taken, please contact Technical Services or the equipment manufacturer for recommendations.

Before starting a collator run, all parts should be checked to assure that:

- Coatings provide satisfactory print intensity and have not been damaged on the press.
- Parts are properly printed and aligned.
- Desensitizing ink (if used) has been effectively and accurately applied without undesirable tracking.

- This can be done by making pencil checks on the individual parts, using a sheet of CB or CF paper as appropriate, or pencil checking a hand-assembled form.

If delivery problems due to curl are experienced on the collator, these can generally be corrected by the following:

- Fasten foam rubber strips, the width of the web, on both sides of the cut-off knife (Figure 10). This flattens the cut end, aids entry into the chute, and also strips the form from the cut-off knife.
- Adjust the hold-down bands, or wheels, or hold the form flat.
- Roll-set curl on tag or ledger grades can generally be corrected by running the paper over an empty station on the collator.

Perforating and Slitting
NCR PAPER brand can be perforated and slit in the same manner as uncoated forms bond.

- Perforating and slitting blades may require more frequent sharpening, because all coatings are slightly abrasive.
- Slitter and perforator blades should be replaced whenever they cause distortion of the cut edge or perforation.
- We recommend using slitting wheels having a double-double bevel which stays sharper longer (Figure 11).
- Periodic inspection of the (Continued on next page)
Numbering & Gluing

Anvil cylinder or surface at the point of contact with the perforating blade or slitting wheel should be made to assure that it is not grooved.

There are often guide wheels connected with perforating equipment that can apply heavy pressure to the paper, which can damage the pressure-sensitive back coating (CB or CFB paper).

- The damaged area then, if used to obtain a print, will give a print of reduced intensity.
- Either reduce the pressure applied by such guide wheels, change them to soft rubber, or move them to a non-useable area of the form.

Numbering

We recommend crash numbering on the collator whenever possible:

- Eliminates the possibility of mixing numbers on different parts.
- Reduces the cost of replacing damaged or missing numbered forms due to splices, web breaks, printing defects, etc.
- As many as eight parts can be crash numbered satisfactorily.
- When the heavier weights including ledger or tag are specified in a form, we suggest actual trials on the collator to assure satisfactory legibility.

Gluing

Collating glues are generally of two types: hot melt glues that give an immediate bond for good register, or cold glues that give a later permanent bond.

- There are a number of manufacturers producing glues that perform satisfactorily with NCR PAPER brand, and we suggest that you contact your regular source.

- With Self Contained grades, which have two coatings applied to the top side of the sheet, we recommend using a knurled wheel in the stub area to break through the coatings thereby exposing paper fibers directly to the adhesive and developing a much stronger bond.

- When using cold adhesives, heat lamps or micro-wave heaters located at the gluing points will assist in setting the adhesive and reducing slippage.

- Some printers eliminate slippage by using two glue lines, one cold for a permanent bond and one hot that sets rapidly and holds the plies together until the cold glue can set.

- The glue system should be adjusted to lay down enough adhesive to provide a satisfactory bond with little or no spreading.

- When spreading occurs, the adhesive can bleed through punched holes or perforations, causing blocking and subsequent handling and decollation problems.

- For best results, the glue system should be kept clean.

- Adhesives should not be mixed without first checking to see that they are compatible.

- The adhesive in the system should be regularly checked for stringiness or hard lumps.

We do not recommend gluing both sides of forms.

- This can lead to wrinkling, misregister between parts, tenting and feed problems with the finished forms.

- These conditions are caused by normal variations in the moisture content and dimensional stability between plies (particularly coated grades), and variations in relative humidity to which the form is exposed during processing and subsequent handling and use.

- If it is necessary that both sides of a form be fastened, we recommend gluing one side and loosely crimping, stapling or tab-locking the other side.
Cutting

Exercise caution when guillotine-cutting pressure-sensitive grades of NCR PAPER brand.

- On CFB, unwanted background color will develop on the CF side under the clamp (hold-down bar) if pressure is excessive.
- After CFB has been cut without unwanted color formation, CB can be cut using the same pressure and procedure without damage to the dye capsules.
- CF grades are not pressure-sensitive and may be trimmed using the same procedure as for bond paper.

Cutting carbonless paper to prevent damage:

- Reduce the clamp pressure to less than 35 p.s.i. (total clamp gauge pressure divided by square inch surface area of the clamped paper). This will not cause color development on CFB and will not damage CB coating.
- Place a piece of open-cell, medium-density sponge rubber, 3/4" to 3/8" thick, under the clamp to cushion the impact of the clamp. With some large guillotine cutters, it is advisable to prevent the clamp from striking the paper. Apply clamp pressure gradually.
- Block up the clamp with a chipboard stack. The stack should be 1/4" higher than the lift of paper and 1/2" from the edge of the paper. Chipboard may be placed on top of the forms to be cut and will reduce the pressure damage on the lift of forms and eliminate any draw.
- Be sure the shear stick, which receives the knife, is even with the table and in good condition. Place a protective sheet of chipboard under the lift to prevent marking of the bottom sheets in a lift.
- “Gang” cutting (more than one lift of forms cut at the same time) can be a convenient way to distribute clamp pressure, and prevent capsule damage.

If there is any capsular damage, it will become more apparent in time.

- The initial lift should be observed shortly after cutting to see if there is any indication of unwanted color indicating capsule damage.

- If there is no coloration on the CFB immediately after it is cut, the final developed color, if any, should be slight and unobjectionable.

The cut edge on CFB will show a small amount of coloration. This can be minimized by:

- Using a sharp cutter knife and
- Preventing “draw”, i.e., movement of the paper, under the clamp.

Experience has proven that the reduced clamp pressure required to cut carbonless paper is still sufficient to prevent “draw”, which can affect sheet dimension and give undesirable edge coloration.

If the printed, live area of a job is positioned on an oversized sheet, it may be possible to clamp on the part of the sheet to be discarded, eliminating any possibility of damage to the printed area.
Miscellaneous Bindery Operations

Bracket Cutting
This operation, because of equipment design, should be periodically checked to assure that it is not causing excessive CB damage.

■ To minimize damage on CB, CFB and Self Contained type, we recommend that the knives be kept sharp and that the height of lifts be reduced.

Scoring-Creasing
These operations do not usually cause problems with NCR PAPER brand.

■ They can damage CB, CFB and Self Contained type coatings; however, in most forms applications there is no need to produce a print at the score or crease.

■ Color will develop on Self Contained type paper upon scoring or creasing.

Tipping
Problems have not been experienced with regular equipment using adhesives formulated for this purpose.

Jogging
Care should be taken to assure proper sequencing and orientation of copies.

■ Sets should be pencil checked occasionally to assure proper transfer though all parts of the form.

■ We recommend the use of collating racks or a table with the jogger to reduce costs on this operation.

■ Multiple-set collation from racks will result in additional savings over single-set collation.

Round Cornering
The plunger ram should be locked to keep it from operating, because the pressure may cause damage to the capsules.

Drilling
Sharpness of the drills is essential to minimize blocking and extensive discoloration around the holes.

Perforating Machines
Except for occasional capsule damage caused by guide wheels, we have not had any indications of problems on this type equipment.

■ For optimum performance, we recommend using an angled conveyor delivery to the perforating head.

Indexing
Damage resembling paper clamp pressure on a cutter can result from die pressure on some indexing machines.

■ Care should be taken so that the die throat does not compress the forms.

Forms Packaging
We recommend good quality corrugated cartons (200# minimum bursting strength) for packaging finished forms.

■ The box should be firmly packed to keep the forms from shifting.

■ If possible, the boxes should be matched to the size of the forms being packaged.

■ Contents should be firm but not over packed as pressure damage can result.

■ A piece of corrugated board should be placed inside the carton at both top and bottom for additional protection.

Shrink Wrap Packaging
Many of our customers have had very good results with shrink-wrapping packages of forms.

■ This provides a low cost, convenient and attractive means of packaging that gives good protection to the contents.

■ Best results are obtained when chipboard is used at the top and bottom of the stack of forms, for added protection.

■ Some plastics contain ingredients that can have an adverse effect on the carbonless coatings, so any shrink films being used for the first time should be checked by Technical Services to assure they are compatible.
Fanapart Edge Padding

Rolls can be run roll to sheet and edge padded only if the rolls are specified “Sheet Quality” production.

- Form sets can be made simply and economically by applying our High Strength Fanapart Padding Adhesive to the edge of the cover of printed and collated NCR PAPER brand forms, then fanning into individual sets after drying.
- The Fanapart Edge Padding application is designed to create form sets that are glued on one edge only.
- Gluing more than one edge can cause unwanted separation and wrinkle problems.
- Fanapart Edge Padding adhesive penetrates and binds coated surfaces of collated forms, but not uncoated surfaces.
- When sets are fanned apart after drying, separation occurs between the uncoated surfaces, i.e. between the form sets.
- Edge padding the forms reduces bindery costs making sheet-fed jobs more competitive in price.

Edge padding suggestions (see photos, page 38):

- Do not mix other brands of carbonless paper with NCR PAPER brand in the same form.
- Poor edge padding can occur due to different system properties of brands.
- A dull knife can physically bind sheets together preventing proper adhesive penetration, and causes capsular damage on the trimmed edge.
- Capsule damage releases capsule oils which may retard glue absorption.
- Fanning and jogging before padding assures sheet edges are aligned and not bound together.
- Excessive CB damage from pressures at the printing nip, or the clamp bar, may also negatively affect padding.
- Enough weight should be applied to the edge being padded to restrict sheet separation at the corners to approximately 1/8”.
- Equal weight distribution across the glued edge is important.

- Before applying weight, place a flat board on top of the paper stack and flush with the edge to be glued. Also, the board length should be greater than the width of the lift, to equalize weight distribution.
- The first part of the form set must be a CB sheet and last part a CF. With CFB sheets, first or last, a user risks unsatisfactorily bonded sets.
- Application of tints or inks at, on, or near the edge to be padded may adversely affect edge padding of a set.
- Use only our High Strength Fanapart Padding Adhesive with NCR PAPER brand. Other adhesives might not work. We cannot control their variability, nor accept responsibility, for unsatisfactory results.
- Begin edge padding with a new or thoroughly cleaned brush to avoid adhesive contamination. After padding, wash brush.

We cannot anticipate the many variations in humidity, equipment, forms design or gluing techniques using NCR PAPER brand Fanapart Padding Adhesive. Users should make their own test to determine optimum applicability.

(Continued on next page)
Fanapart
Edge Padding
continued

1. Jog sheets to the edge to be padded.

2. Place fanned and jogged paper on flat surface, or in padding rack, so the edge to be padded does not overhang the supporting base.

3. Place weight distribution board on stack of paper, flush with padding edge. The board should be longer than padding surface.

4. Place enough weight on board flush with padding edge to restrict paper separation at corners to approximately 1/8 inch.

5. Apply adhesive with a fully-loaded brush stroking horizontally from center outward until padded surface is uniformly wet. Check for uniform penetration at the corners.

6. Refer to label on adhesive bottle for recommended drying and fanning. Be certain to follow the outlined instructions carefully. Additional descriptive literature is available upon request.
Troubleshooting Tips

This section consists of a list of conditions that may occur when processing NCR PAPER brand, along with recommended corrective action.

- The recommendations are listed in the order that our experience indicates should be followed for the fastest solution of the problem.
- Those conditions common to all paper grades, which are normally solved through the operators’ general knowledge and experience, have not been included in this listing.
- If the suggestions presented in this section are not effective in correcting the problems described, or if problems not included in this list are encountered, please contact Technical Services for additional recommendations.

CAUSE

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>GENERAL</th>
<th>SPECIFIC</th>
<th>RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backaway from fountain roller*</td>
<td>Ink</td>
<td>Ink rolls up</td>
<td>Agitate with ink knife or add agitator.</td>
</tr>
<tr>
<td></td>
<td>Ink</td>
<td>Ink is too short and heavy bodied</td>
<td>Add varnish (consult ink manufacturer) except desensitizing ink.</td>
</tr>
<tr>
<td>Baggy or tapered roll</td>
<td>Paper</td>
<td>Caliper variations across the web</td>
<td>As with all papers, collation should be done in position sequence as to printed location on press. If side-to-side variation will not permit collation or further processing, the roll should be rejected. See policy section for rejection procedure on bad rolls and method of filing claim.</td>
</tr>
<tr>
<td>Blanket swelling</td>
<td>Paper</td>
<td>Damaged CB coating</td>
<td>Reduce impression pressure and maintain minimum pressures during processing.</td>
</tr>
<tr>
<td></td>
<td>Press</td>
<td>Extraneous oil</td>
<td>Watch for excessive oil applied during routine equipment maintenance.</td>
</tr>
<tr>
<td></td>
<td>Blanket</td>
<td>Blanket wash</td>
<td>Consult manufacturer.</td>
</tr>
<tr>
<td></td>
<td>Ink</td>
<td>Ink-blanket compatibility</td>
<td>Consult manufacturer.</td>
</tr>
</tbody>
</table>

(Continued on next page)

Low tack inks recommended for coated papers will occasionally cause this condition, if they are not properly formulated.
Troubleshooting Tips

continued

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>CAUSE</th>
<th>GENERAL</th>
<th>SPECIFIC</th>
<th>RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinding</td>
<td>Plate</td>
<td>Improper preparation</td>
<td>Make new plate following manufacturer’s processing recommendations and develop to a solid 6 on gray scale.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dampening</td>
<td>Too much acid</td>
<td>Check pH.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dampening</td>
<td>Too much gum</td>
<td>Reduce gum in dampening system.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Press</td>
<td>Plate-blanket pressure</td>
<td>Check impression to ensure .002” to .003” nip.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ink</td>
<td>Improper formulation</td>
<td>Consult ink manufacturer.</td>
<td></td>
</tr>
<tr>
<td>CB Damage</td>
<td>Paper</td>
<td>Transit damage</td>
<td>Inspect all incoming shipments for damage from mishandling or dropping - contact carriers for improved handling and damage claim.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paper</td>
<td>Excessive truck clamp pressure</td>
<td>Reduce clamp pressure to minimum amount needed to lift material for transporting. Use pressure relief valve on clamp trucks.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Press</td>
<td>Excessive impression pressure</td>
<td>Reduce impression pressure.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Press</td>
<td>Excessive rewind tension</td>
<td>Reduce tension on press rewinder so that rolls are just hard enough to prevent telescoping.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Press</td>
<td>Localized damage</td>
<td>Avoid excessive impression pressure and raised metal plates.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Press</td>
<td>Crash imprinting</td>
<td>Keep transfer area clear of solid or heavy density imprint.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Press</td>
<td>Perforating</td>
<td>Replace perforating jacket when excessive area abrasion is created.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Press</td>
<td>Friction damage</td>
<td>Make sure that idler rolls are traveling at web speed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collator</td>
<td>Localized damage</td>
<td>All feed and guide mechanisms or any points where the paper is contacted by the equipment should be set to the minimum pressure consistent with satisfactory performance.</td>
<td></td>
</tr>
<tr>
<td>Shear Cutting</td>
<td>Excessive paper clamp pressure</td>
<td>Reduce clamp pressure to 35 pounds per square inch, or less, of paper covered by clamp. Operate clamp manually to ensure gradual contact with paper. See Section 3 (Collating and Binding) for detailed instructions.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting Tips

Continued

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>GENERAL</th>
<th>SPECIFIC</th>
<th>RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chalking</td>
<td>Ink</td>
<td>Vehicle absorbed before ink is set</td>
<td>Add binding base or body gum (consult ink manufacturer).</td>
</tr>
<tr>
<td></td>
<td>Ink</td>
<td>Wrong ink</td>
<td>Consult ink manufacturer.</td>
</tr>
<tr>
<td>Color varies</td>
<td>Dampening</td>
<td>Dampering feed varies</td>
<td>Keep system clean - maintain uniform level.</td>
</tr>
<tr>
<td></td>
<td>Dampening</td>
<td>Erratic dampening</td>
<td>Keep system clean - eliminate drafts.</td>
</tr>
<tr>
<td>Curl</td>
<td>Paper</td>
<td>Roll set</td>
<td>Use breaker bar with CF grades only.</td>
</tr>
<tr>
<td>Dented roll</td>
<td>Paper</td>
<td>Flat side bumped by pointed object in transit or handling</td>
<td>Run to dent, cut out damaged area, resplice, continue run.</td>
</tr>
<tr>
<td>Dust, lint or fuzz buildup</td>
<td>Paper</td>
<td>Loose dust or paper fibers</td>
<td>See Picking.</td>
</tr>
<tr>
<td>Excessive or bad splices</td>
<td>Paper</td>
<td>Mill defect</td>
<td>Notify Technical Services Department.</td>
</tr>
<tr>
<td>Filling in of screens</td>
<td>Press</td>
<td>Too much ink</td>
<td>Decrease ink flow from fountain.</td>
</tr>
<tr>
<td></td>
<td>Press</td>
<td>Impression pressure</td>
<td>Check impression to ensure .002” to .003” nip.</td>
</tr>
<tr>
<td></td>
<td>Ink</td>
<td>Ink too soft</td>
<td>Add binding base or body gum (consult ink manufacturer).</td>
</tr>
<tr>
<td></td>
<td>Ink</td>
<td>Too much drier</td>
<td>Consult ink manufacturer for correct formula. Check printing pressures.</td>
</tr>
</tbody>
</table>

(Continued on next page)
Troubleshooting Tips

Troubleshooting Tips continued

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>CAUSE</th>
<th>RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaky solids</td>
<td>Dampening, Too much dampening</td>
<td>Decrease dampening water flow.</td>
</tr>
<tr>
<td>Horizontal streaks</td>
<td>Press, Loose slipping blanket</td>
<td>Tighten blanket.</td>
</tr>
<tr>
<td>Ink fails to dry</td>
<td>Dampening, Solution too acid</td>
<td>Check pH.</td>
</tr>
<tr>
<td></td>
<td>Ink, Improper formulation</td>
<td>Consult ink manufacturer.</td>
</tr>
<tr>
<td>Ink rollers stripping</td>
<td>Dampening, Fountain solution too acid</td>
<td>Check pH.</td>
</tr>
<tr>
<td></td>
<td>Dampening, Too much water</td>
<td>Reduce dampening water flow.</td>
</tr>
<tr>
<td></td>
<td>Press, Desensitized rollers</td>
<td>Pumice and etch ink rollers as recommended by manufacturer.</td>
</tr>
<tr>
<td></td>
<td>Press, Rollers glazed</td>
<td>Deglaze rollers.</td>
</tr>
<tr>
<td>Loss of sharpness</td>
<td>Press, Printing pressure</td>
<td>Check blanket height with a packing gauge.</td>
</tr>
<tr>
<td>and solidity</td>
<td>Blanket, Swelling</td>
<td>Check blanket for correct solvent or oil resistance. Obtain faster evaporating wash that is compatible with blanket being used (consult manufacturer).</td>
</tr>
<tr>
<td></td>
<td>Paper, Blanket swelling or piling</td>
<td>See Blanket Swelling and Piling.</td>
</tr>
<tr>
<td></td>
<td>Ink, Wrong ink</td>
<td>Make sure ink and blanket are compatible.</td>
</tr>
<tr>
<td></td>
<td>Blanket, Glazing</td>
<td>Scrub with pumice powder and sponge the blanket with water after each washing or use a commercial glaze remover.</td>
</tr>
<tr>
<td>Mottling</td>
<td>Ink, Ink too heavy or thin</td>
<td>Reduce or build as needed (consult ink manufacturer).</td>
</tr>
<tr>
<td></td>
<td>Ink, Improper tack</td>
<td>Add body gum (consult ink manufacturer).</td>
</tr>
<tr>
<td></td>
<td>Press, Impression pressure</td>
<td>Check impression to ensure .002” to .003” nip.</td>
</tr>
<tr>
<td></td>
<td>Ink, Wrong ink</td>
<td>Consult ink manufacturer.</td>
</tr>
<tr>
<td></td>
<td>Paper, Galvanized (Cal. Crush)</td>
<td>Consult Technical Services Department.</td>
</tr>
</tbody>
</table>
Troubleshooting Tips

CAUSE

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>GENERAL</th>
<th>SPECIFIC</th>
<th>RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offsetting</td>
<td>Press</td>
<td>Too much ink on paper</td>
<td>Reduce ink flow from fountain.</td>
</tr>
<tr>
<td></td>
<td>Ink</td>
<td>Not enough drier</td>
<td>Add cobalt drier (consult ink manufacturer).</td>
</tr>
<tr>
<td></td>
<td>Ink</td>
<td>Wrong ink</td>
<td>Check ink manufacturer or their reference charts.</td>
</tr>
<tr>
<td></td>
<td>Ink</td>
<td>Ink too heavy - is not absorbed</td>
<td>Add varnish (consult ink manufacturer).</td>
</tr>
<tr>
<td></td>
<td>Dampening</td>
<td>Fountain solution too acid</td>
<td>Check pH.</td>
</tr>
<tr>
<td></td>
<td>Press</td>
<td>Delivery stacked too high</td>
<td>Remove completed sheets more often.</td>
</tr>
<tr>
<td></td>
<td>Press</td>
<td>Roll rewound too tight</td>
<td>Reduce rewind tension to that of mill roll.</td>
</tr>
<tr>
<td></td>
<td>Press</td>
<td>Operator mishandles</td>
<td>Educate personnel to offset problem.</td>
</tr>
<tr>
<td></td>
<td>Press</td>
<td>Static</td>
<td>Attach static eliminator.</td>
</tr>
<tr>
<td>Out of Round Rolls</td>
<td>Paper</td>
<td>Improper storage</td>
<td>Store rolls on flat side.</td>
</tr>
<tr>
<td></td>
<td>Paper</td>
<td>Core damage</td>
<td>Reduce truck clamp pressure - do not drop on edge.</td>
</tr>
<tr>
<td>Picking</td>
<td>Ink</td>
<td>Ink too tacky</td>
<td>Use ink in the tack range of 10 - 12 or add reducer* (consult ink manufacturer).</td>
</tr>
<tr>
<td></td>
<td>Blanket</td>
<td>Tackiness</td>
<td>Use quick release blankets. For temporary relief treat with blanket lacquer or hardener.</td>
</tr>
<tr>
<td></td>
<td>Dampering</td>
<td>Insufficient dampening</td>
<td>Increase dampening water flow.</td>
</tr>
<tr>
<td></td>
<td>Dampering</td>
<td>Water-alcohol balance</td>
<td>Check alcohol - bring content to between 20% to 30%.</td>
</tr>
<tr>
<td></td>
<td>Press</td>
<td></td>
<td>Reduce operating speed.</td>
</tr>
<tr>
<td></td>
<td>Press</td>
<td></td>
<td>Reduce impression pressure.</td>
</tr>
<tr>
<td></td>
<td>Press</td>
<td>Water-alcohol balance</td>
<td>Install vacuum sheet cleaner.</td>
</tr>
<tr>
<td></td>
<td>Paper</td>
<td>Poor coating adhesion</td>
<td>Contact Technical Services Department.</td>
</tr>
</tbody>
</table>

(Continued on next page)

A number of our customers indicate that Jet Speed Pomade from Sleight & Hellmuth, Inc. effectively lowers the tack range of inks; however, other reducers are also available that give satisfactory performance. Contact your ink supplier.
Troubleshooting Tips

continued

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>GENERAL</th>
<th>SPECIFIC</th>
<th>RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piling — non-image area</td>
<td>Ink</td>
<td>Paper dust or lint</td>
<td>Add reducer (check ink manufacturer).</td>
</tr>
<tr>
<td>Press</td>
<td></td>
<td></td>
<td>Check impression to ensure .002” to .003” nip.</td>
</tr>
<tr>
<td>Dampening</td>
<td></td>
<td></td>
<td>Increase dampening water flow.</td>
</tr>
<tr>
<td>Dampening</td>
<td></td>
<td></td>
<td>Increase ink flow from fountain.</td>
</tr>
<tr>
<td>Press</td>
<td></td>
<td></td>
<td>Reduce operating speed.</td>
</tr>
<tr>
<td>Press</td>
<td></td>
<td></td>
<td>Install vacuum sheet cleaner.</td>
</tr>
<tr>
<td>Piling — image area</td>
<td>Dampening</td>
<td>Ink-water balance</td>
<td>Same as non-image area, except reduce ink flow from fountain.</td>
</tr>
<tr>
<td>Paper</td>
<td></td>
<td>Micro-picking or ghost image</td>
<td>Increase ink and/or dampening water.</td>
</tr>
<tr>
<td>Dampening</td>
<td></td>
<td>Ink-water balance</td>
<td>Check alcohol content - bring content to between 20% and 25%.</td>
</tr>
<tr>
<td>Dampening</td>
<td></td>
<td></td>
<td>Increase dampening water flow.</td>
</tr>
<tr>
<td>Blanket</td>
<td></td>
<td></td>
<td>Use good quality, quick release blanket.</td>
</tr>
<tr>
<td>Press</td>
<td></td>
<td></td>
<td>Check blanket height to ensure .002” to .003” impression nip.</td>
</tr>
<tr>
<td>Piling — outside web area</td>
<td>Press</td>
<td>No transfer to paper</td>
<td>Use fountain dividers - place some lubricating grease or start up ink on the rollers and fountain, outside of dividers.</td>
</tr>
<tr>
<td>Plate Image Wear</td>
<td>Dampening</td>
<td>Too much gum</td>
<td>Re-etch plate, reduce gum in dampening system.</td>
</tr>
<tr>
<td>Dampening</td>
<td></td>
<td>Too much acid</td>
<td>Check for roller stripping - check pH.</td>
</tr>
</tbody>
</table>
Troubleshooting Tips

(Continued from previous page)

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>CAUSE</th>
<th>RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate Wear</td>
<td>Press</td>
<td>Readjust form roll pressure.</td>
</tr>
<tr>
<td></td>
<td>Form roll pressure</td>
<td></td>
</tr>
<tr>
<td>Dampening</td>
<td>Fountain solution too acid</td>
<td>Check pH.</td>
</tr>
<tr>
<td>Press</td>
<td>Too little ink</td>
<td>Increase ink flow from fountain.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check plate and blanket packing.</td>
</tr>
<tr>
<td>Ink</td>
<td>Too much drier</td>
<td>Reduce drier (consult ink manufacturer).</td>
</tr>
<tr>
<td>Plate</td>
<td>Plate processed wrong</td>
<td>Make new plate.*</td>
</tr>
<tr>
<td>Paper</td>
<td>Loose coating particles</td>
<td>Contact Technical Services Department.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scumming</td>
<td>Ink</td>
<td>Add binding base, body gum or varnish</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(consult ink manufacturer).</td>
</tr>
<tr>
<td></td>
<td>Ink is too soft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too much ink</td>
<td>Adjust ink-water balance - pH should be</td>
</tr>
<tr>
<td></td>
<td></td>
<td>between 4.0 and 5.0.</td>
</tr>
<tr>
<td></td>
<td>Too much drier</td>
<td>Consult ink manufacturer.</td>
</tr>
<tr>
<td>Dampening</td>
<td>Dirty or worn covers</td>
<td>Wash dampener or ductor roll covers.</td>
</tr>
<tr>
<td>Dampening</td>
<td>Greasing</td>
<td>Clean fountain and distribution roller; re-etch.</td>
</tr>
<tr>
<td>Dampening</td>
<td>Dampering roller pressure</td>
<td>Reset rollers, check for trueness, consider enclosed system eliminating plate dampening rollers.</td>
</tr>
<tr>
<td>Dampening</td>
<td>Emulsifying-sensitizing coating agent Water</td>
<td>Use stiffer ink, eliminate wetting agent (consult manufacturers).</td>
</tr>
<tr>
<td>Dampening</td>
<td>streaks Insufficient acid</td>
<td>Adjust ductor-distributor roller contact.</td>
</tr>
<tr>
<td>Dampening</td>
<td>or gum Form roll</td>
<td>Check pH.</td>
</tr>
<tr>
<td>Press</td>
<td>pressure</td>
<td>Readjust form roll pressure.</td>
</tr>
<tr>
<td>Plate</td>
<td>Plate wear</td>
<td>Wash plate more frequently to remove foreign particles.</td>
</tr>
<tr>
<td>Plate</td>
<td>Oxidation</td>
<td>Dry plate quickly. Keep storage areas as dry as possible.</td>
</tr>
</tbody>
</table>

When plates are made, we recommend adding a gray scale as a quality control. A solid step 6 generally gives the best performance.
Troubleshooting Tips

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>CAUSE</th>
<th>GENERAL</th>
<th>SPECIFIC, RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slur or double image</td>
<td>Press</td>
<td>Loose blanket</td>
<td>Replace or tighten blanket.</td>
</tr>
<tr>
<td></td>
<td>Press</td>
<td>Wear or malfunction</td>
<td>Have press serviceman check press out.</td>
</tr>
<tr>
<td>Sticking</td>
<td>Blanket</td>
<td>Blanket wash too strong</td>
<td>Change blanket wash (consult blanket and chemical manufacturers.)</td>
</tr>
<tr>
<td></td>
<td>Paper</td>
<td>Poor coating adhesive balance</td>
<td>Contact Technical Services Department.</td>
</tr>
<tr>
<td>Tinting</td>
<td>Dampering</td>
<td>Fountain solution too acid</td>
<td>Check pH.</td>
</tr>
<tr>
<td></td>
<td>Dampering</td>
<td>Ink-water balance</td>
<td>Washup - readjust ink and water.</td>
</tr>
<tr>
<td></td>
<td>Ink</td>
<td>Ink is too soft</td>
<td>Add binding base, body gum or varnish (consult ink manufacturer).</td>
</tr>
<tr>
<td></td>
<td>Plate</td>
<td>Plate processed wrong</td>
<td>Make new plate.</td>
</tr>
<tr>
<td>Wash marks</td>
<td>Dampering</td>
<td>Excessive water</td>
<td>Decrease dampening water flow.</td>
</tr>
<tr>
<td>Web breaks</td>
<td>Paper</td>
<td>Atmospheric changes</td>
<td>Acclimate paper to press room conditions to eliminate tight edges.</td>
</tr>
<tr>
<td></td>
<td>Paper</td>
<td>Unmarked or unsatisfactory splices</td>
<td>Contact Technical Services Department.</td>
</tr>
<tr>
<td></td>
<td>Press</td>
<td>Excessive web tension or improper adjustment</td>
<td>Check press adjustments, reduce web tension to the minimum required for satisfactory performance.</td>
</tr>
<tr>
<td></td>
<td>Paper</td>
<td>Low strength</td>
<td>Consult Technical Services Department.</td>
</tr>
<tr>
<td>Web wrinkles</td>
<td>Paper</td>
<td>Atmospheric changes</td>
<td>Acclimate paper to press room conditions. Build up ends of infeed rollers with tape.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Preheat web. Use Mount Hope Roller.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increase web tension.</td>
</tr>
</tbody>
</table>
Specialty Applications

NCR PAPER brand carbonless is used for a number of specialty applications: bar coding, MICR, CMC7, ink jet, mark sense, and OCR.

■ In each instance, trial forms should be run and extensive testing done on the equipment on which the form will be used.
■ Appvion recommends this approach for new forms applications or in instances where a printer is duplicating a form which is now being used in a specialty application.
■ Warranties may be limited in experimental applications, so it is recommended to contact your Technical Service Representative before producing these specialty applications.

Bar Code
The rawstock surface of CB, the CF surface of CFB, and the CF surface of CF have been found to accept certain fast drying ribbons designed for bar coding.

■ Specialty inks and specialty mylar ribbons for encoders and ink jets are also being used to apply bar codes to NCR PAPER brand carbonless.
■ Suppliers of these materials and equipment are familiar with printing processes and the paper.
■ Pretesting should be done to prevent misapplication of the papers chosen.
■ The reading of bar coded carbonless images is not recommended.

■ Although a bar coded carbonless image may read in some instances, the readability will vary by the type and condition of the reader.
■ Appvion makes no guarantee of the readability of bar code carbonless images. NCR PAPER brand grades have been used successfully for these types of applications (testing recommended).

MOCR/OCR
■ Appvion produces specialty grades for MICR applications.
■ Appvion MICR/MOCR grades meet:
 • AMB-Estandares Papa El Processo de Cheques (Mexican Standard)
 • ISO 1004
 • APACS CBS1 Standard
■ Appvion also produces grades for OCR applications.
■ Our OCR CB grades are sold for specialty medical, insurance, retail and other applications where OCR is being used with machine readable fonts.
■ OCR scanners are increasingly flexible so other grades may work but only OCR qualified grades are recommended.
■ Appvion strongly recommends that MOCR/OCR forms are trialed in all equipment used in the applications.
Specialty Applications

continued

CMC7
- CMC7 is used for checks in Europe, South America and some regions of Asia.
- CMC7 is a hybrid between MICR and bar coding.

Ink Jet
- Ink jet printers are being used to apply specialty fonts and graphics to NCR PAPER brand carbonless.
- This equipment includes small desk top ink jet printers and large ink jet printing presses.
- The large presses are most often used for applying variable data to preprinted forms for direct mail applications.
- The raw stock surface of some CB grades has been tested and found to be receptive to ink jet inks.

- Coated surfaces such as the CF side of CFB and CF, are less likely to receive ink jet ink without smearing or feathering.
- Trials are recommended before producing forms using ink jet as a printing method.

Mark Sense
- Mark sense forms require very exacting specifications.
- OCR papers are required.
- The raw stock surface of OCR CBs are used in some applications.
- Pretesting is necessary because Mark Sense readers vary in their ability to accept different papers and are often set up for only approved papers.
- Consult the reader manufacturer’s specifications and Appvion Technical Service before producing forms.
Optical Character Recognition (OCR)

Optical Scanning forms with machine-readable language are used to eliminate the manual entry of information.

- Optical Character Recognition (OCR) is only one type of optical scanning among many.
- The quality of optical reader equipment has improved to the point where special papers are not as critical as in the past.
- OCR grades are specifically designed to have the proper physical and functional properties such as shade and reflectance needed to maximize performance with optical readers.

Because of the difference in scanners, it is impossible to say whether any paper is acceptable unless you know the type of scanner being used.

- Selection of the correct paper will depend on the scanner being used and the specific physical and functional requirements of that reader and other equipment in the system.
- Required values of paper properties such as brightness, stiffness, shade, reflectance, opacity vary from reader to reader.
- If specific paper specifications are not available, trials are recommended.

NCR PAPER brand OCR and MOCR grades are designed to meet multiple scanner requirements, while functioning correctly as a carbonless sheet. MOCR grades, for example, meet both MICR and OCR requirements.

It is recommended that optical reading be restricted to the original document and not the copies unless extensive testing has been performed.

- The lighter weights and the colors other than white associated with the back plies of a form usually make these plies difficult to scan.
- The carbonless image produced by multiple plies may not have the contrast values needed to scan properly.
- In cases where the properties of CB do not meet the specifications of selected equipment, or the equipment manufacturer does not recommend carbonless, OCR bond for the original with Self Contained for the copies makes a viable alternative.

Technical Service will attempt to answer specific questions regarding specific applications.
Magnetic Ink Character Recognition (MICR)

Development
The American Bankers Association (ABA) approved the MICR standard in 1958. This system was developed because the manual procedures used for processing the growing flow of paper documents in the 1950’s was becoming inadequate.

- Encoding with the E13B font, referred to as MICR numbers, makes checks, deposit tickets or forms machine-readable.
- Generally speaking, checks are encoded with three sets of MICR numbers: routing, customer account, and the amount.
- A rigid set of standards have been developed for MICR by ANSI, including size and location of characters, number of digits allowed within a field of information, the sequence of these fields, and proper ink densities.

MICR Ink, Toner and Transfer Ribbon
- MICR pigments, used to print the E13B font, contain iron oxide.
- Iron oxide is electronically excited, forming a magnetic field which can be read by specially designed equipment.
- Each MICR character emits its unique signal which can be interpreted by the reader to designate the individual character.
- There are three widely used methods for applying MICR pigments to documents:
 - Magnetic ink is a specially formulated ink with iron oxide in it.
 - Magnetic toner is used in copiers and laser printers.
 - Magnetic ribbon, used in impact printers, ribbon encoders, and post encoding devices to apply MICR pigments in a dry form.

MICR Quality
The quality of MICR printing is critical.

- Most banks are testing printed samples before check orders can be used by customers.
- Banks test for format, spacing, alignment, character edge irregularities, voids, uniformity of ink, ribbon and toner, extraneous ink, debossing or embossing of characters, signal strength of characters.
- All these specifications must meet ANSI standards.

NCR PAPER and DocuCheck GRADES:
- All DocuCheck Security Paper and MICR grades are extensively tested for compliance with X9B.18 ANSI Papers Specification for Checks.
- In addition, regular tests for press runnability, reader-sorter trials and laser printer trials are conducted.

Press Tips
When printing magnetic inks, it is important to balance the formulation for the type of press being used.

- Magnetic ink is more sensitive to fountain solution conditions and ink tack than other printing inks because of the higher pigment content.
- MICR inks do not flow as easily as other inks so they require more monitoring.
- They also tend to increase in tack on press causing difficulties in character formation.
- Regular addition of fresh ink to the fountain is recommended.

MICR ribbons are applied by ribbon encoders and post encoding devices in banks.

- Although no special ribbon is required to print NCR PAPER brand MICR or DocuCheck grades, some ribbon brands give better results than others.
- Testing when choosing the brand of ribbon, is important for best results.
- Regular batch testing of new shipments is advisable in order to ensure maximum productivity and quality that complies with ANSI Standards.
- Encoder maintenance plays a large role in accurate results.

The quality of MICR applied by toner on laser printers and copiers is critical.

- Regular testing of the results is expected by the banks before introducing the check into the Federal Reserve System.
- Toners supplied by the printer manufacturer are recommended but OEM toners can also give good results.
- Batch testing is advisable to prevent rejection by the banks.
Shelf Life & Storage

Shelf life is the length of time printed forms are stored—under normal conditions—before they are imaged for use.

- A shelf life of two years is assured, but storage duration can be greater, especially if forms are stored under ideal conditions.
- Forms that have been stored in files since initial production over 30 years ago are still capable of producing an acceptable image.

Print stability is the ability of the carbonless image to resist fade and maintain legibility for a prolonged period.

NCR PAPER brand carbonless images are guaranteed to last for the life of the document when stored under normal office conditions.

- Many government agencies and large institutions including the IRS have approved NCR PAPER brand for applications requiring permanency.
- An NCR PAPER brand image is also feather or bleed free, unlike carbon paper images.

But, certain unusual external or chemical factors have been identified that can adversely affect stability of the NCR PAPER brand carbonless images. Substances to be avoided and which usually are not factors under normal office and storage conditions include:

- Contact with certain vinyls and plastics.
- Contact with, or exposure to, fresh copies from wet toner copy machines, or stencil masters and solvents.
- Prolonged exposure to ultraviolet light sources, such as direct sunlight and fluorescent lighting.
- Repeated, direct contact with hand creams, skin oils, or related ointments.
- Storage with unapproved carbon papers.
- Unapproved label protection tapes.
- Unapproved shrink film.

Coated front surfaces may turn yellow with age.

- This yellowing characteristic may be accelerated with time, high temperature, certain types of light, and some industrial fumes such as exhaust fumes from internal combustion engines.
- This effect is referred to as resin-yellowing.

Very cold temperatures will slow the development of an image.

- The image will still develop to maximum intensity at room temperature.
- NCR PAPER brand Ultimark® produces legible images even in freezing conditions.
Photocopies of carbonless images on sheets of NCR PAPER brand are readily reproducible on a wide variety of office copy machines.

- Blue Print image gives satisfactory results in most situations.
- Black Print image provides optimum results.
- When possible, construct a dummy set. Write or type on it as in its end use. Copy and evaluate.

Some office copiers have difficulty copying gray and blue images, but it's usually possible to get good results if the following suggestions are considered:

- Copy quality depends upon good print definition and intensity of the original.
- For best results, copy a ply closest to the original in a form set, for the image sharpness should be better than a ply further down in the form.

When microfilming, the image to be filmed should be well defined and intense.

- Film a copy close to the original in a manifold set.
- The most important controlling factor in microfilming is the film. Two film types, ortho and panchromatic, are used for microfilming.
- Generally, best results are achieved using panchromatic film with AHU (Anti-Halation Undercoat).

Types of cameras used can affect proficiency of microfilming carbonless images. Cameras with longer exposure times usually give better results.

NCR PAPER brand Black Print provides high-contrast reproduction
Instant Replay® II

Instant Replay II helps detect pressure-damage to CB sheets.

- It reacts with colorless dye released from damaged capsules, causing color development in damaged areas.
- This helps a printer adjust pressure settings for optimum running of NCR PAPER brand.

The CB coating on CB and CFB grades is sensitive to pressure, thus can be damaged during handling or processing.

- Using Instant Replay II helps establish where damage has occurred, so corrective steps can minimize, or eliminate, the condition.
- CB coating can be damaged on a sheet press by such conditions as excessive impression pressure, and improper settings of ejector and infeed wheels.
- On web presses, damage may result from frozen or dragging idler rollers, excessive impression pressure, excessive rewind tension, or from bumping or dropping rolls— or even rolling rolls on the floor.
- Guillotine cutting NCR PAPER brand without minimizing clamp-bar pressure may also rupture CB capsules.

Using Instant Replay II reveals CB damage through variations in color intensity or pattern.

- Overall damage is indicated by fairly uniform color development in the sprayed area, localized damage by color concentrations in specific areas.
- To illustrate damage effects, take samples from the same roll or lift before and after processing, spray and compare.
 - Some color will develop on undamaged paper.
 - Due to variations in spraying technique and color development, one cannot accurately estimate amount of damage by color intensity.
 - Take samples through successive stages of processing, spray after each step, and note the degree of color.
 - At each point where pressure damage is evident, make adjustments to reduce damage.

When setting up a press, compare samples from feed and delivery piles — or web press sheet unwind and rewind stations — for excessive impression pressure, or other improper settings.

- Take corrective steps.
- Follow the paper through each pressure area.
- Adjust and check with Instant Replay II until any damage is minimized.

Instructions for use of Instant Replay II:

- Can should be at room temperature.
- Place samples closely together.
- Shake can briefly.
- Hold can upright 10-12 inches from sheets, spraying back and forth till sheets appear damp.
- Allow paper to dry, then examine.
- Compare the pattern with adjacent photos for common CB damage.
Receiving API Products

A Carrier Delivery Receipt and a Packing List will accompany each Appvion shipment. You will be required to sign the Carrier Delivery Receipt. Before signing the Carrier Delivery Receipt please follow these instructions:

- Immediately inspect for transit damage.
- If there is damage...
 - Indicate type and extent of damage (be specific) on Carrier Delivery Receipt.
 - Sign the Carrier Delivery Receipt and ask carrier driver to also sign. (If driver refuses, so indicate.)
 - Take photos of the load when possible (before unloading).
 - Accept damaged paper and set aside for inspection by carrier or Appvion Field Technical Service Rep.
 - Take photos again of the damaged paper when possible (after unloading).
 - Phone Appvion, Inc. Customer Service Department at:

U.S. and Canada
(800) 533-9421
Hours: Monday-Friday
7:00 AM - 5:30 PM (CT)

International
(920) 991-7639
Hours: Monday-Friday
7:00 AM - 4:00 PM (CT)

- Submit claim to:
 Appvion, Inc.
 Customer Service Department
 825 E. Wisconsin Ave.
 P.O. Box 359
 Appleton, WI 54912

- Include with claim:
 - Copy of Delivery Receipt
 - Amount of damage (piece count and description)
 - If salvage, amount recovered
 - Evidence of damage (photos)
 - Appvion (not the carrier) will process transit damage claims when the above steps are followed.

- Next, compare piece count on Delivery Receipt with piece count of material received. If discrepancy:
 - Indicate discrepancy (be specific) on Delivery Receipt.
 - Sign the Delivery Receipt and ask carrier driver to sign. (If driver refuses, so indicate.)
 - Submit claim to Appvion Technical Services Department.

- You should also receive a Packing List with the shipment, if you do not, please contact Appvion, Inc.

- Immediately compare individual items received with each item listed on packing list. Discrepancies must be reported in ten days. If a discrepancy:
 - Indicate discrepancy (be specific) on Packing List.
 - Sign the Packing List.
 - Phone claim to Appvion, Inc. Technical Services Department within ten days after receipt of shipment.
 - Submit a copy of signed Packing List indicating discrepancy to Technical Services Department.

- Contact Customer Service when finding damaged paper not noted upon receipt of delivery.
Complaint Procedure

In order that we may best provide you with expedient service and complete answers to any inquiries or complaints, we request certain documentation and samples. Most questions or complaints are resolved in principle on the same day they are received by Technical Services.

All complaints should be forwarded to:
Appvion, Inc. Technical Services Department
825 E. Wisconsin Ave.
P.O. Box 359
Appleton, WI 54912
West: (800) 922-1723
Central: (800) 981-9681
East: (800) 922-1724
Hours: Monday-Friday 7:30 AM - 4:30 PM (CT)

The following information is necessary to expedite handling of your complaint:

• Your company name and address.
• (Your merchant's name and address.)
• Paper identification — grade, weight, color, size, amount (pounds, rolls or sheets).

Order Identification —
• Send labels, if possible, or —
• Output number (1)
• Run number (2)
• Mill order number (3)
• (Refer to photo for numbers 1, 2, 3)

This information enables us to quickly contact the responsible mill areas and report the nature and extent of the problem.

Samples — send:
• Unprinted and printed (exhibiting the problem).
• 12 qt. original size sheets
• 12-foot length from each roll.
• 12 qt. finished forms.

Other support to send:
• Curled or Wavy Edges — Send samples flat. Do not roll.
• Damaged Blanket — Submit along with sample of the associated paper defect.
• Dimensional Instability — Besides adequate form samples, include a film positive.
• Blanket Contamination — Send sample of contaminant: Remove by tape from blanket, then fold the tape inward. Do not tape to a sheet.
• A photograph may be sent in lieu of samples, if the nature of the problem is such that samples would not verify the difficulty, such as a loosely rewound roll.

Returned Paper

• Do not return or dispose of any paper, except for samples submitted to illustrate the complaint, until instructions have been received from Technical Services.
• To avoid transit damage, all authorized returns of defective paper should be securely packaged in the original or similar container if possible.
• Return according to instructions given.
• Each roll, package and shipping papers should be plainly marked with the appropriate complaint reference number.

Final Disposition will be promptly given upon verification of the problem.
Roll Length Calculation

To calculate the length of paper on a roll, we recommend using the following formula:

\[L = \frac{(D^2 - d^2) \times 0.06545}{C} \]

Where

- \(L \) = length (feet)
- \(D \) = outside diameter of roll (inches)
- \(d \) = outside diameter of core (inches)
- \(C \) = caliper (inches)

Calculating the length of paper .0037" in caliper on a 16" O.D. roll with a 4" O.D. core would be accomplished as follows:

\[L = \frac{(16^2 - 4^2) \times 0.06545}{0.0037} \]

\[L = \frac{(256 - 16) \times 0.06545}{0.0037} \]

\[L = (240) \times 0.06545 \]

\[L = 4245 \text{ Feet} \]

Metric Conversion Guide

Area

<table>
<thead>
<tr>
<th>Unit</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sq. centimeter (sq cm)</td>
<td>= .0001 centare (ca) or 1 ca = 10,000</td>
</tr>
<tr>
<td>Hectare (ha)</td>
<td>= 1 ca x 10,000</td>
</tr>
<tr>
<td>Square kilometer (sq km)</td>
<td>= 1 ca x 1,000,000</td>
</tr>
<tr>
<td>1 sq mm</td>
<td>= 0.0001 sq in.</td>
</tr>
<tr>
<td>1 sq cm</td>
<td>= 0.155 sq in.</td>
</tr>
<tr>
<td>1 sq m or ca</td>
<td>= 10.7639 sq ft. or 1.1960 sq yd.</td>
</tr>
<tr>
<td>1 a</td>
<td>= 119.599 sq yd.</td>
</tr>
<tr>
<td>1 ha</td>
<td>= 2.4711 acres</td>
</tr>
<tr>
<td>1 sq km</td>
<td>= 3861 sq mi.</td>
</tr>
<tr>
<td>6.4516 sq cm</td>
<td>= 1 sq in.</td>
</tr>
<tr>
<td>0.929 sq m</td>
<td>= 1 sq ft.</td>
</tr>
<tr>
<td>0.8361 sq m</td>
<td>= 1 sq yd.</td>
</tr>
<tr>
<td>4047 sq m</td>
<td>= 1 acre</td>
</tr>
<tr>
<td>2.5900 sq km</td>
<td>= 1 sq mi. or 640 acres</td>
</tr>
</tbody>
</table>

Weight & Mass

<table>
<thead>
<tr>
<th>Unit</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milligram (mg)</td>
<td>= Gram ÷ 1,000</td>
</tr>
<tr>
<td>Centigram (cg)</td>
<td>= Gram ÷ 100</td>
</tr>
<tr>
<td>Decigram (dg)</td>
<td>= Gram ÷ 10</td>
</tr>
<tr>
<td>Gram (g)</td>
<td>= Kilogram (kg) ÷ 1,000</td>
</tr>
<tr>
<td>Metric Ton (MT)</td>
<td>= 2,204.6 lb</td>
</tr>
<tr>
<td>1 g</td>
<td>= 0.0353 oz.</td>
</tr>
<tr>
<td>1 kg or 1,000 g</td>
<td>= 35.274 oz or 2.2046 lb.</td>
</tr>
<tr>
<td>Ton</td>
<td>= 0.097 MT</td>
</tr>
<tr>
<td>1.016MT</td>
<td>= 1 short ton 2,000 lb.</td>
</tr>
<tr>
<td>1 long ton 2,240 lb.</td>
<td>= Hundredweight (cwt)</td>
</tr>
<tr>
<td>45.359 kg</td>
<td>= 1 short cwt 100 lb.</td>
</tr>
<tr>
<td>50.802 kg</td>
<td>= 1 long cwt 112 lb.</td>
</tr>
<tr>
<td>28.350 g</td>
<td>= 1 oz.</td>
</tr>
<tr>
<td>453.59 g</td>
<td>= 1 lb.</td>
</tr>
<tr>
<td>453.6 kg</td>
<td>= 1 lb.</td>
</tr>
<tr>
<td>0.907 MT</td>
<td>= 1 short ton</td>
</tr>
<tr>
<td>1.016 MT</td>
<td>= 1 long ton</td>
</tr>
</tbody>
</table>

Length

<table>
<thead>
<tr>
<th>Unit</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Millimeter (mm)</td>
<td>= Meter ÷ 1,000</td>
</tr>
<tr>
<td>Centimeter (cm)</td>
<td>= Meter ÷ 10</td>
</tr>
<tr>
<td>Decimeter (dm)</td>
<td>= Meter ÷ 10</td>
</tr>
<tr>
<td>Decameter (dkm)</td>
<td>= Meter x 10</td>
</tr>
<tr>
<td>Hectometer (hm)</td>
<td>= Meter x 100</td>
</tr>
<tr>
<td>Kilometer (km)</td>
<td>= Meter x 1,000</td>
</tr>
<tr>
<td>Myriameter (mym)</td>
<td>= Meter x 10,000</td>
</tr>
<tr>
<td>1 mm</td>
<td>= 0.0394 in.</td>
</tr>
<tr>
<td>1 cm</td>
<td>= 0.3937 in.</td>
</tr>
<tr>
<td>1 dm</td>
<td>= 3.9370 in.</td>
</tr>
<tr>
<td>1 m</td>
<td>= 39.37 in.</td>
</tr>
<tr>
<td>1 dkm</td>
<td>= 32.81 ft.</td>
</tr>
<tr>
<td>1 km</td>
<td>= 3280 ft. 10 in.</td>
</tr>
<tr>
<td>1 mym</td>
<td>= 6.214 mi.</td>
</tr>
</tbody>
</table>

2.540 cm = 1 in.
30.480 cm = 1 ft.
0.9144 m = 1 yd.
1.6093 km = 1 mi.
Metric Conversion Guide

Fraction, Decimal and Metric Equivalents

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Decimal</th>
<th>MM</th>
<th>Fraction</th>
<th>Decimal</th>
<th>MM</th>
<th>Fraction</th>
<th>Decimal</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/64</td>
<td>0.0156</td>
<td>.397</td>
<td>3/8</td>
<td>0.375</td>
<td>9.525</td>
<td>5/7</td>
<td>0.7143</td>
<td>18.143</td>
</tr>
<tr>
<td>1/32</td>
<td>0.0313</td>
<td>.794</td>
<td>25/64</td>
<td>0.3906</td>
<td>9.922</td>
<td>23/32</td>
<td>0.7188</td>
<td>18.256</td>
</tr>
<tr>
<td>3/64</td>
<td>0.0469</td>
<td>1.191</td>
<td>2/5</td>
<td>0.4000</td>
<td>10.160</td>
<td>8/11</td>
<td>0.7273</td>
<td>18.473</td>
</tr>
<tr>
<td>1/16</td>
<td>0.0625</td>
<td>1.588</td>
<td>13/32</td>
<td>0.4063</td>
<td>10.319</td>
<td>47/64</td>
<td>0.7344</td>
<td>18.653</td>
</tr>
<tr>
<td>5/64</td>
<td>0.0781</td>
<td>1.984</td>
<td>5/12</td>
<td>0.4167</td>
<td>10.583</td>
<td>3/4</td>
<td>0.7500</td>
<td>19.050</td>
</tr>
<tr>
<td>1/12</td>
<td>0.0833</td>
<td>2.117</td>
<td>27/64</td>
<td>0.4219</td>
<td>10.716</td>
<td>49/64</td>
<td>0.7656</td>
<td>19.447</td>
</tr>
<tr>
<td>1/11</td>
<td>0.0909</td>
<td>2.309</td>
<td>3/7</td>
<td>0.4286</td>
<td>10.886</td>
<td>7/9</td>
<td>0.7778</td>
<td>19.756</td>
</tr>
<tr>
<td>3/32</td>
<td>0.0938</td>
<td>2.381</td>
<td>7/16</td>
<td>0.4375</td>
<td>11.112</td>
<td>25/32</td>
<td>0.7813</td>
<td>19.844</td>
</tr>
<tr>
<td>1/10</td>
<td>0.1000</td>
<td>2.540</td>
<td>4/9</td>
<td>0.4444</td>
<td>11.289</td>
<td>51/64</td>
<td>0.7969</td>
<td>20.241</td>
</tr>
<tr>
<td>7/64</td>
<td>0.1094</td>
<td>2.778</td>
<td>29/64</td>
<td>0.4531</td>
<td>11.509</td>
<td>4/5</td>
<td>0.8000</td>
<td>20.320</td>
</tr>
<tr>
<td>1/9</td>
<td>0.1111</td>
<td>2.822</td>
<td>5/11</td>
<td>0.4545</td>
<td>11.546</td>
<td>13/16</td>
<td>0.8125</td>
<td>20.638</td>
</tr>
<tr>
<td>1/8</td>
<td>0.1250</td>
<td>3.175</td>
<td>15/32</td>
<td>0.4688</td>
<td>11.906</td>
<td>9/11</td>
<td>0.8182</td>
<td>20.782</td>
</tr>
<tr>
<td>9/64</td>
<td>0.1406</td>
<td>3.572</td>
<td>31/64</td>
<td>0.4844</td>
<td>12.303</td>
<td>53/64</td>
<td>0.8281</td>
<td>21.034</td>
</tr>
<tr>
<td>1/7</td>
<td>0.1429</td>
<td>3.629</td>
<td>1/2</td>
<td>0.5000</td>
<td>12.700</td>
<td>5/6</td>
<td>0.8333</td>
<td>21.167</td>
</tr>
<tr>
<td>1/6</td>
<td>0.1667</td>
<td>4.233</td>
<td>33/64</td>
<td>0.5156</td>
<td>13.097</td>
<td>27/32</td>
<td>0.8438</td>
<td>21.431</td>
</tr>
<tr>
<td>11/64</td>
<td>0.1719</td>
<td>4.366</td>
<td>17/32</td>
<td>0.5313</td>
<td>13.494</td>
<td>6/7</td>
<td>0.8571</td>
<td>21.771</td>
</tr>
<tr>
<td>2/11</td>
<td>0.1818</td>
<td>4.618</td>
<td>6/11</td>
<td>0.5455</td>
<td>13.855</td>
<td>55/64</td>
<td>0.8594</td>
<td>21.828</td>
</tr>
<tr>
<td>3/16</td>
<td>0.1875</td>
<td>4.763</td>
<td>35/64</td>
<td>0.5469</td>
<td>13.891</td>
<td>7/8</td>
<td>0.8750</td>
<td>22.225</td>
</tr>
<tr>
<td>1/5</td>
<td>0.2000</td>
<td>5.080</td>
<td>5/9</td>
<td>0.5556</td>
<td>14.111</td>
<td>8/9</td>
<td>0.8889</td>
<td>22.578</td>
</tr>
<tr>
<td>13/64</td>
<td>0.2031</td>
<td>5.159</td>
<td>9/16</td>
<td>0.5625</td>
<td>14.288</td>
<td>57/64</td>
<td>0.8906</td>
<td>22.622</td>
</tr>
<tr>
<td>7/32</td>
<td>0.2188</td>
<td>5.556</td>
<td>4/7</td>
<td>0.5714</td>
<td>14.514</td>
<td>9/10</td>
<td>0.9000</td>
<td>22.860</td>
</tr>
<tr>
<td>2/9</td>
<td>0.2222</td>
<td>5.644</td>
<td>68/64</td>
<td>0.5781</td>
<td>14.684</td>
<td>29/32</td>
<td>0.9063</td>
<td>23.019</td>
</tr>
<tr>
<td>15/64</td>
<td>0.2344</td>
<td>5.953</td>
<td>7/12</td>
<td>0.5833</td>
<td>14.817</td>
<td>10/11</td>
<td>0.9091</td>
<td>23.091</td>
</tr>
<tr>
<td>1/4</td>
<td>0.2500</td>
<td>6.350</td>
<td>19/32</td>
<td>0.5938</td>
<td>15.081</td>
<td>11/12</td>
<td>0.9167</td>
<td>23.283</td>
</tr>
<tr>
<td>17/64</td>
<td>0.2656</td>
<td>6.747</td>
<td>3/5</td>
<td>0.6000</td>
<td>15.240</td>
<td>59/64</td>
<td>0.9219</td>
<td>23.416</td>
</tr>
<tr>
<td>3/11</td>
<td>0.2727</td>
<td>6.927</td>
<td>39/64</td>
<td>0.6094</td>
<td>15.478</td>
<td>15/16</td>
<td>0.9375</td>
<td>23.813</td>
</tr>
<tr>
<td>9/32</td>
<td>0.2813</td>
<td>7.144</td>
<td>5/8</td>
<td>0.6250</td>
<td>15.875</td>
<td>61/64</td>
<td>0.9531</td>
<td>24.209</td>
</tr>
<tr>
<td>2/7</td>
<td>0.2857</td>
<td>7.257</td>
<td>7/11</td>
<td>0.6364</td>
<td>16.164</td>
<td>31/32</td>
<td>0.9688</td>
<td>24.606</td>
</tr>
<tr>
<td>19/64</td>
<td>0.2969</td>
<td>7.541</td>
<td>41/64</td>
<td>0.6406</td>
<td>16.272</td>
<td>63/64</td>
<td>0.9844</td>
<td>25.003</td>
</tr>
<tr>
<td>3/10</td>
<td>0.3000</td>
<td>7.620</td>
<td>21/32</td>
<td>0.6563</td>
<td>16.669</td>
<td>1"</td>
<td>1.0000</td>
<td>25.400</td>
</tr>
<tr>
<td>5/16</td>
<td>0.3125</td>
<td>7.937</td>
<td>2/3</td>
<td>0.6667</td>
<td>16.933</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/3</td>
<td>0.3333</td>
<td>8.467</td>
<td>43/64</td>
<td>0.6719</td>
<td>17.066</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/32</td>
<td>0.3438</td>
<td>8.731</td>
<td>11/16</td>
<td>0.6875</td>
<td>17.463</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23/64</td>
<td>0.3594</td>
<td>9.128</td>
<td>7/10</td>
<td>0.7000</td>
<td>17.780</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/11</td>
<td>0.3636</td>
<td>9.236</td>
<td>45/64</td>
<td>0.7031</td>
<td>17.859</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To convert a decimal to percentage, carry the decimal point two places to the right. Thus, 63/64, or .9844, equals 98.44%.
Glossary

Absolute Humidity
The amount of water vapor present in a specified volume of air.

Acid
A corrosive compound containing hydrogen which reacts with certain metals and alkalis to form salt. In solution it turns blue litmus red and is characterized by a sour taste. It is used in printing for etching plates and in fountain solution. The acidity of a solution is generally expressed as pH.

Adhesion
The strength of bond between paper and coatings.

Air Shafts
Pneumatic expandable mechanisms inserted into roll core to position and hold the roll on the press unwind or rewind shaft.

Alkali
A caustic alkali hydroxide or metallic oxide which reacts with acids to form salt. In solution, it turns red litmus blue and is characterized by a bitter taste and soapy feel. Alkalinity of a solution is generally expressed as pH.

Anhydrous Alcohol
Alcohol that is free from water.

Anvil Cylinder
A hardened metal press or collator roll which backs up the score cutting knives.

Art Work (Black and White Reproduction Art; Camera Ready or Finished Art; Keyline or Pasteup; Mechanical Art.)
Final drawing or good, sharp print of illustration or type matter which can be photographed.

Backaway
A condition occurring in the ink fountain when the ink does not adhere to the roller.

Back Gauge
Movable metal bar behind the knife on paper cutters used for squaring the paper.

Background Color
Overall color development resulting from damaged CB in contact with CF.

Backprinting
Applying thin film of ink to CB surface as screened image. Ink dries by oxidation and evaporation.

Baggy Rolls
A roll condition caused by tension variations across the web.

Basis Weight
The weight of one ream (500 sheets) of paper in a specified or standard size for that grade.

Bearers
Bands on each end of the press cylinders which maintain the correct separation between the cylinders.

Binder
A material used in coatings and inks to hold them together and make them adhere to the material on which they are applied.

Black Light
Ultraviolet light used to detect desensitizing ink tracking, spray or voids.

Blanket
Vulcanized rubber sheet on a fabric base used to cover the press cylinder. It transfers the inked image from the plate to the press sheet in offset printing.

Blanket Swelling
An increase in blanket caliper caused by contact with substances that are not compatible with the blanket materials.

Bleed
A colored halo extending beyond the impression area of a printed line, character or imaged area. (See

Blinding
Plate with an image that will not accept ink.
Glossary

Blocking
Undesirable sticking of successive plies or sheets.

Blockout
The use of printed solids or patterns on specific areas of parts of a form set to prevent disclosure of information.

Body
Viscosity or consistency of an ink or vehicle.

Body Gum
Thick varnish used to stiffen inks.

Bond Paper
Chemical wood or rag content papers with basis weights (17” X 22”) up to 24# (26# NCR PAPER brand used for forms, letterheads and general business purposes).

Breaker Bar
A metal bar over which a web of paper is drawn at a sharp angle to reduce curl.

Bridge
The uncut area in a perforation.

Brightness
A measure of whiteness of paper.

Bulk
A bookmaking term for thickness of paper expressed in number of pages per inch under a given pressure.

Burster
Mechanical device used to separate continuous forms into individual sets.

Bursting Strength
Resistance of paper to rupture under pressure, indicated in pounds per square inch on a Mullen Tester.

Caliper
Thickness of a sheet of paper expressed in thousandths of an inch.

Capsules
In CB and SC type coatings, the micro-droplets of colorless dye solution are surrounded by a protective coating. These microcapsules are ruptured by pressure above 35 pounds per square inch, which releases the dye solution in contact with the CF surface, causing the print to develop.

Capsule Damage
CB coating which has been subjected to excessive pressure which caused the microcapsules to break thereby rendering that area incapable of making a satisfactory print.

CB — Coated Back
The back coated sheet which serves as the original in a carbonless form set.

CF — Coated Front
The front coated sheet which serves as the receiving part of the form.

CFB — Coated Front and Back
The front and back coated sheet that serves as the intermediate part(s) of a carbonless form set.

C1S
Coated one side, either CB or CF coatings.

C2S
Coated both sides with the same coating, either CB or CF.

Chain Delivery
Endless chain with grippers that accept the sheet from the impression cylinder and transport it to the delivery pile for ink drying and better runability purposes.

Chalking
A condition in a printed image in which the pigment is not properly bound to the paper and can easily be rubbed off as a powder.

Chucks
Mechanisms inserted into roll core to position and hold the roll on the press unwind or rewind shaft.
Glossary

Coating
Material applied to paper surface to give it special characteristics.

Coating Pattern
Appearance of a coated surface caused by the nature of the coating, method of application or drying technique.

Coating Weight
A measure of the amount or weight of coating applied, usually expressed in pounds per ream for a given sheet size.

Cobalt Drier
A material that accelerates ink drying.

Cockle
A puckered appearance in paper caused by uneven drying.

Collating
Gathering and assembling into order, parts of multiple part forms.

Collator
A device for assembling multiple part forms.

Color Development
Chemical change that occurs when the colorless dye in the CB coating reacts with the CF coating and gives a colored image.

Combers
Wheels that buckle the top sheet in the feed pile to start the sheet separation.

Compatible
Dissimilar materials that do not affect or are not affected by contact with the others.

Compatible Carbon
Carbon paper that can be incorporated into an NCR PAPER brand form set without affecting the functional properties of the system.

Consecutive Number
Sequential numbering.

Copy
Any material (hand drawn, typewritten manuscript, pictures, art work, etc.) to be set and reproduced.

Crash Printing
A method of printing precollated form sets using hard type and heavy impression pressure to image all parts except the original which receives the ink.

Crimp Lock
Joining of continuous webs of paper and/or carbon by pressing several punched tabs on each ply through the bottom ply.

Crop
Remove outer area, or edge, of copy by masking or cutting.

Cross Direction
Perpendicular to the machine or grain direction of a sheet or web of paper.

Crushed Core
Collapsed core due to handling or transit damage.

Curl
The tendency of paper not to lie flat. There are two kinds: structural, which is related to the manufacturing and/or coating process, and roll-set (wrap), which results from the paper being wrapped around the core. Structural curl is with (or occasionally diagonal to) the grain; roll set curl is always across the grain.

Cut
A type-high engraving, line or halftone, used in the letter-press printing process.

Cylinder Press
A printing press having a flat bed for the type form with the printing being done against a revolving cylinder.

Dampeners
Rollers that transfer the dampening solution to the offset plate.
Glossary

Dancer Roll—Dancing Idler
A weighted roller that rides between the unwind and metering unit. The roller is used to take up slack and maintain a uniform web tension.

Dandy Roll
Wire-cylinder on papermaking machines that patterns or watermarks the web.

Decollator
Mechanical device used to separate parts of continuous forms while removing waste materials such as carbons.

Desensitize
To restrict the ability of NCR PAPER brand to produce a print.

Desensitizing Ink
Transparent ink applied to CF coating to prevent print development.

Diecut
Removal of form sections by use of cutting rule or special die.

Dimensional Stability
The property of a paper to resist changes in size caused by stresses occurring during processing and/or changes in temperature and relative humidity.

Discoloration
A change in the color of the paper.

Distributing Rollers
Rollers that break down and distribute ink to the form rollers.

Double-Double Bevel
A slitter wheel with both sides angled in from the center having sharper angles at the cutting edge, to give better resistance to dulling.

Draw
Movement of paper under clamp when guillotine cut, causing a difference in length between top and bottom of lift.

Driers
Compounds added to ink to accelerate drying.

Drilling
The use of hollow rotating paper drill bits to make holes in a lift or stack of paper.

Driography
An offset printing process using special planographic plates and inks that do not require dampening to differentiate between image and non-image areas.

Dry Offset
A printing process using a relief plate and blanket but no water.

Doctor Roller
Ink or water roller that alternately contacts the fountain and distributing rollers.

Duplex
Paper having different colors and/or finishes on opposing sides.

Dusting
Debris, coating pick, slitter dust, fibers, and/or starch is deposited onto the blanket from the paper during the printing process. In severe cases dusting can affect the quality of the printed image.

Dwell Time
The period when two objects are in contact.

Edge Gumming
The process of gluing multiple parts along the edge of the sheets to create a finished form.

Edge Padding
A process of gluing collated form sets or similar sheets along one edge to hold them in order for further processing or use. (See Fanapart)

Emulsification
A condition when the offset ink and fountain solution mix.
Glossary

Endorsability
The writing upon the CB portion of a carbonless sheet, such as endorsing a check. Fine point pens can give inconsistent results due to coating accumulation at the point.

Etch—Offset Lithography
A dilute acid that is mixed with the dampening fountain water to increase water acceptability in the non-printing areas of the plate.

Etch—Photoengraving
To image a plate by chemical or electrolyte action.

Fanapart
A system of edge padding using a special adhesive that enables a lift of glued forms to be quickly and easily separated into individual sets by fanning.

Fanfold
The process of folding a web width of paper into a form set with a subsequent zigzag fold to make packs of completed forms.

Feathering
A form of bleeding in which fine lines of color radiate from the imaged areas.

Feeder
A mechanical device on a printing press that separates and delivers the sheets into the press.

Felt Side
The top side of the sheet from a fourdrinier paper machine.

Flaky Solids
Printed solid ink areas on paper that have the appearance that the ink has flaked or peeled off.

Flat Side
The ends of a paper roll.

Flow
The tendency of an ink to level out in an ink fountain.

Flying Paster
A mechanism that allows the lead end of a new roll of paper to be connected to the trailing end of the previous roll without stopping the press, coater or paper machine.

Formation
A pattern in paper caused by variations in the amount of fiber laid down across the web.

Form Rollers
Ink or water rollers that contact the plate or form.

Fountain
Reservoir for ink or water on printing press.

Fountain Solution
Solution carried in the water fountain of an offset printing press.

Fuzz
A residue on paper consisting of loose fibers or lint.

Gap Space
The area unaffected by the use of excessive impression pressure.

Gathering
Assembling into order, parts of multiple part forms.

Ghost Image
A term used when two sheets of CB are placed one over the other, and pressure or imaging is applied to the top sheet. Due to basestock pH and a mild reaction with the broken capsule dye, a light image may appear on the bottom ply.

Grain Direction
The direction in which the paper was produced on the paper machine and the majority of the individual fibers lie. Also referred to as machine direction.

Grain Long
In cut paper, when the grain runs in the long dimension of the sheet.

Grain Short
In cut paper, when the grain runs in the short dimension of the sheet.
Glossary

Grippers
Metal fingers that hold paper and carry it through the press.

Gripper Edge
The front or leading edge of paper held by the grippers as it passes through the press.

Gripper Margin (Plate Gap)
Unprinted edge of area of paper it passes through a printing press.

Gum Arabic
Water soluble dried sap from acacia trees used in fountain solution and as protective coating on offset plates.

Gumming Up
Process of applying a gum arabic solution to the surface of an offset plate to prevent oxidation and protect it from damage during washup and make-ready.

Hairline Rule
A rule less than one point (1/2") wide.

Half-tone
A method of reproducing a continuous tone picture by using small screened dots on the plate to represent varying degrees of light and dark.

Hickies
Doughnut shaped spots in inked areas caused by dirt or other extraneous matter.

Hold Down Bands
Flexible strips at the delivery end of a press or collator to guide the sheets to the stack.

Idle Rollers
Rollers used to break down the ink before it reaches the form rollers.

Impression Cylinder
A press cylinder which presses the paper against the blanket or type to transfer ink to the paper.

Indexing
Die-cutting of forms to place tab or shoulder cuts at one or both ends for easy identification.

Indicator Solution for Ludox*
Desensitizing ink tracking, spray, or voids can be detected by using an Indicator Solution for Ludox which turns the CF coating blue when sprayed on nondesensitized areas. The spray will not indicate adequate coverage or effectiveness of the desensitized area.

Ink
Fluid or viscous material of various colors used in printing. The ingredients are determined by the printing process, type of paper and the end use requirements.

Instant Replay
CF material in an aerosol spray can that is used to detect CB damage.

Intaglio
A direct process, printing from an ink filled recessed image plate.

Jog
The process of aligning sheets of paper for further processing.

Jump Perforation
Perforations applied partially to the form length by cross perforating cylinders.

Knurled Wheel
A rough surfaced wheel used on collators to break through the paper coating, exposing fibers in the stub or margin to give improved adhesive performance.

Ledger
Chemical wood or rag content papers in the 24# to 36# (17" x 22") range used for bookkeeping and machine applications because of their superior physical properties.

Legibility
Clarity or definition of print.

Letterpress
A direct process printing from relief type or plates.

Letterset
Dry offset printing from plates with a relief image.

*DuPont registered trademark
Glossary

Lift
A stack of paper.

Line Hole Punching
Equally spaced holes punched in one or both margins of continuous forms to facilitate feeding in forms handling equipment.

Lithography
The process of printing from a planographic surface (Plate) that has been sensitized and selectively developed so that the image area is ink receptive, while the non-image area is water receptive.

Long
Ink that has good flow properties in the fountain.

Machine Coated
Paper that has been coated on the papermaking machine.

Magnetic Ink
Ink containing a magnetic oxide pigment.

Makeready
Press preparation necessary for printing a job.

Manifolding Form
A multiple part form designed for good writing and print-through properties.

Marginal Word (Phrase, Letter or Numerical)
Identifying marks printed on form parts to designate distribution or flow after decollation.

MICR—Magnetic Ink Character Recognition
A system of electronically reading information encoded on documents printed in magnetic ink with a special type font.

Micro Picking
Similar to picking except that the particles pulled from the surface are too small to be readily visible.

Micropiling
Micropiling is a variation of piling characteristic of, but not limited to, CB surface printing. It appears as minute particles of build-up within the boundaries of the printed image. Its damaging effect is limited to image quality.

Misting
Misting is a fine spray of ink droplets thrown off from the rollers in a fast running press. This is more likely to occur with a low viscosity ink.

Moisture
The amount of water present in paper.

Moisture Welts—Weather Wrinkles
Small raised areas on the outside of rolls caused by absorption of moisture from the air.

Molleton
Cloth used to cover dampening rollers on an offset press.

Mottle
Irregular and unwanted variation in color or gloss caused by uneven absorbency of the substrate.

Mullen Tester
A machine for testing the bursting strength of paper.

NCR PAPER Brand
Carbonless paper in which microcapsules of colorless transfer material and colorless receiving material coated on adjacent paper surfaces enable reproduction of the image printed or written on the original through successive parts without the use of carbon. This is accomplished when pressure ruptures microcapsules and transfers the colorless dye solution to the receiving surface where a chemical reaction occurs, causing a colored image to develop.

OCR—Optical Character Recognition
Use of an electronic device to recognize marks printed or written on documents and convert them into machine language. The process relies on differences in contrast between marks or characters and the surface of the paper.

Offset
A printing process in which ink is transferred indirectly from the plate to the paper by means of a blanket.

Opacity
The resistance of paper to transmission of light or "show through".
Glossary

Oscillating Rollers
Rollers that move back and forth sidewise as they rotate to distribute ink to the form rollers.

Packing
Sheets of paper or plastic used to raise surface of plates or blankets to correct printing height.

Padding
The process of gluing multiple sheets along the edge to hold them together.

Pallet
A wood base consisting of two large opposing side frames with top and bottom cross members that is used to facilitate handling of paper rolls.

Pallet Pak
A type of packaging for pressure sensitive grades in which the wrapped rolls are placed on a pallet and enclosed in a corrugated carton.

Paper Clamp
The pressure-actuated bar on a guillotine that holds the lift of paper down to prevent draw.

Pencil Check
Test before printing to assure that correct side will be printed.

Perfecting Press
A press capable of printing both sides of the paper in one pass.

Perforate
Placing alternating in-line cuts and ties in paper for subsequent separation.

pH
The degree of acidity or alkalinity in a solution. pH 7 is neutral, above is alkaline, below is acidic.

Picking
Picking is characterized by coating and/or fiber being pulled off in the Z direction of the paper. This can be caused by too high of an ink tack, too fast of press speed, poor internal bonding of paper fibers or insufficient binder in the coating. In commercial printing, picking can also occur between two or more layers of ink.

Picture Framing
Slitter or coating dust that accumulates on the blanket, outlining the edge of the sheet.

Pigment
Microscopic particles added to printing inks to give color, body and opacity.

Piling
Piling is the result of ink-in-water emulsification mixing with particles of dust, debris, or coating pigment thus interfering with the transfer properties of the ink. A crusty build-up may occur on the blanket along the trailing edge of the printed image. In extreme cases, if undetected, blanket smash will occur.

Pin Holes
 Barely visible openings in paper where no fibers were deposited by the machine.

Plate-Offset
Light sensitive coated sheet material, which after imaging, serves as the master for offset printing.

Plies
Individual parts of a multiple copy form.

Position Sequence
The order, relative to location in the web, in which narrow rolls are slitted on the press (left, center, right, etc.).

Precollated
Sheeted carbonless paper consisting of the required grades, weights and colors assembled in reverse or straight sequence to eliminate collation after printing.

Pressure Sensitive
A material that is susceptible to damage by weight, friction or impact.

Print Fade
Loss of image due to exposure to certain unusual external or chemical factors.

Print Intensity Development
An increase, with time, in the strength of color after carbonless paper is imaged.
Glossary

Print Intensity
The degree of color occurring when carbonless paper, CB and CF (or SC alone), coatings are imaged.

Print Stability
The ability of the image to resist fade and maintain legibility.

Proof
A trial impression or test print made to permit easier examination prior to final printing.

Punching
A method of making holes by means of a two-part die.

Ream
Five hundred sheets of paper of a specific size.

Register
Alignment of forms, images or ink colors relative to each other.

Relative Humidity (RH)
The amount of water vapor present in the atmosphere expressed as a percentage of the maximum that could be present at the same temperature.

Resin Yellowing
The term used to describe yellow discoloration on CF surfaces. This occurs over time as the resin in the CF reacts with the atmosphere. Certain storage conditions can cause greater amounts of the discoloration.

Reverse Stacking
A technique used when guillotining assembled forms having varying length plies to eliminate the need for building up the thick end of the lift.

Ridges
Raised streaks running in the grain direction in rolls or skids of paper resulting from localized higher caliper or lower compressibility of the paper.

Rope Wrinkles
A distortion having a rope-like appearance running in the grain direction in rolls or skids of paper resulting from localized lower caliper or stretching. These normally disappear during running and do not cause wrinkles or misregister.

Rotary Collation
Assembling sets in the proper sequence from rolls printed on a roll to roll press.

Round Side
The cylindrical or curved side of a paper roll.

Rubber Plate
Relief molded rubber plate used for direct transfer of ink to paper.

Safety CB
An NCR PAPER brand grade in which the CB coating is applied to the back side of safety paper.

Safety Paper
A special patterned grade for checks or documents made to reveal any attempts at chemical or physical erasure or alteration.

SC—Self Contained
A self imaging grade of NCR PAPER brand in which both dye and reactant coatings are applied to the front side of the sheet.

SC-CB—Self Contained CB
A self imaging grade of NCR PAPER brand that has CB coating on the back surface allowing it to be used with transfer grades of NCR PAPER brand.

Score
To impress or indent paper to facilitate folding.

Scumming
Scumming is an imbalance in the printing process causing the non-image area of the plate to accept ink. Not to be confused with toning which differs in appearance and is ink/water oriented, scumming is not easily cleaned up and can result from one or more of the following situations: — Incompatibility between ink and fountain solution — Plate wear — Poorly desensitized plate — Poorly formulated ink — Improperly set rollers — Paper contaminants.

Setoff (Offset)
Undesirable transfer of ink to a contacting surface.

Shelf Life
Shelf life is the length of time printed forms are stored—under normal conditions—before they are imaged for use.
Glossary

Short
An ink that does not flow freely in the fountain.

Shrink Wrapping
A packaging system in which objects are tightly sealed in special plastic films. The material is placed in a loosely fitting film sleeve which is then passed through a special oven where heat causes the film to contract and hold the contents firmly. Some shrink wraps adversely affect NCR PAPER brand.

Silk Screen
Process of printing through a masked fine silk or wire screen to transfer ink to the image areas on the paper.

Sizing
Material applied to the surface of paper to improve its physical or functional properties.

Skid
A wood base consisting of two large opposite side frames with top cross members which is used to facilitate handling large quantities of paper.

Skip Coating
Areas or streaks on the paper web to which coating was not applied.

Skip Perforation
Perforations that are applied partially to the form width by cam action.

Slime Spots
Translucent spots or holes in paper caused by micro-organisms in the papermaking system.

Slip Sheet
Sheets of paper inserted between printed sheets to eliminate ink set.

Slitting
1. Separation of individual sets from a stack by using a cut down knife drawn along the padded edge of the sheets in the stack.
2. Conversion of mill rolls into smaller widths and diameter rolls for use as adding machine rolls, tally rolls, etc.

Smoothness
The surface finish or lack of roughness of paper.

Smudge
A blue discoloration on the CF coated side of carbonless paper that occurs when it is in contact with CB coating under excessive pressure. Some of the conditions leading to this are storing CFB rolls on their side, failure to follow recommended cutting procedures, heavy impression on press followed by tight rewind and prolonged storage before collation. Self Contained type NCR PAPER brand is also subject to this condition.

Smudge—Frictional
A blue discoloration on the CF coated side of carbonless paper that occurs when it is brought in tight, sliding contact with CB coating such as would occur on rewinding a CFB roll or multiple ply tally rolls. SC paper is also subject to this condition.

Sponge Rubber
Pad attached to bottom of clamp bar to alleviate clamp bar smudges.

ST
Carbonless paper for stock forms applications. Also called Economy.

Stiffness
The resistance to bending of paper.

Suckers
Vacuum feet used on press for lifting paper and moving it forward in the press feeder system.

Tablock
A type of flexible fastening used on continuous forms.

Tack
The resistance of an ink film to splitting.

Tag
A smooth heavy grade of paper used where durability and strength are prime requirements.

Tear
A measure of paper strength.
Glossary

Telescoping
A condition occurring with loosely wound rolls where pressure on the flat side causes the opposite side to bulge out.

Thermal Paper
Heat-sensitive products used on facsimile, labels, data terminals, calculators and chart recording equipment.

Throw Length
The theoretical circumference of a printing plate and the length of image it produces. It is measured in terms of the cumulative deviation from the theoretical length.

Tie
The uncut area of a perforation.

Tinting
Tinting as it relates to the production of business forms is the process of using an alcohol or water based solution to dye white paper various colors. This is an on-line process.

Toning
A phenomenon characterized by ink in the nonimage areas on the blanket, paper, and eventually the plate, which stems from ink/water logging.

Tipping
A technique for assembling unit set forms in which the individual parts vary in length and location along the stub.

Tracking
A form of set off where ink is transferred from printed areas to clear areas by contact with idler rolls, etc.

Translucent
A grade of paper providing more "show through" or light transmission than bond grades, generally used when diazo copies are needed.

Trapping
Ability of ink to accept and hold succeeding colors on multiple color runs.

Tusche
Liquid ink used for corrections on lithographic presses.

Unit-Set Forms
Non-continuous forms in which the parts are permanently glued in the stub but perforated for ease of separation.

Varnish
Substance used as a vehicle or base in the making of ink.

Vehicle
The fluid ingredients of printing ink that provide flow and act as a carrier for the pigment.

Viscosity
An ink’s resistance to flow.

Wash Marks
Streaks in ink patterns on the paper from excessive dampening solution.

Washup
Removal of ink from ink mill and fountain.

Watermark
An identifying mark or pattern made by a dandy roll as the paper is formed.

Water Penetration
A test that indicates the degree of sizing in a paper.

Web Detector
Sensing device that trips off the impression and ink when the web breaks.

Web Guides
Use of electric eyes, air resistance or touch to control lateral position of paper flow.

Web Press
Rotary presses that print a continuous roll (web) of paper.

Wire Side
Side of paper in contact with wire during manufacture.

Yield
An expression for square inches of paper per pound of weight.

Zigzag Fold
The process of folding continuous form web lengths into packs.
Technical Services & Customer Service

Technical Services Department:
- Complaints (Damage, see Customer Service)
- Technical information
- Packaging & Handling
- Application Information

Customer Service Department:
- Order Information
- Product Availability
- Product Inquiries
- Pricing

Appvion, Inc.
Technical Services Dept.
825 E. Wisconsin Ave.
P.O. Box 359
Appleton, WI 54912

West: (800) 922-1723
Central: (800) 981-9681
East: (800) 922-1724

Hours: Monday - Friday
7:30 AM - 4:30 PM (CT)

U.S. and Canada
(800) 533-9421
Hours: Monday - Friday
7:00 AM - 5:30 PM (CT)

International
(920) 991-7639
Hours: Monday - Friday
7:00 AM - 4:00 PM (CT)

General Offices:
Appvion, Inc.
825 E. Wisconsin Ave.
P.O. Box 359
Appleton, WI 54912
(920) 734-9841

Visit Our Web Site:
www.appvion.com